Acta Geodaetica et Cartographica Sinica ›› 2017, Vol. 46 ›› Issue (10): 1770-1777.doi: 10.11947/j.AGCS.2017.20170322
Previous Articles Next Articles
ZHOU Xinghua1,2, FU Yanguang1,2, XU Jun3
Received:2017-06-19
Revised:2017-07-17
Online:2017-10-20
Published:2017-10-26
Supported by:CLC Number:
ZHOU Xinghua, FU Yanguang, XU Jun. Progress and Prospects in Developing Marine Vertical Datum[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1770-1777.
| [1] 方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京:海洋出版社, 1986. FANG Guohong, ZHENG Wenzhen, CHEN Zongyong, et al. Analysis and Prediction of Tides and Tidal Currents[M]. Beijing:Maritime Press, 1986. [2] 赵建虎, 柯灏, 张红梅. 长期验潮站潮位观测误差的综合探测及修复方法研究[J]. 武汉大学学报(信息科学版), 2011, 36(12):1490-1494. ZHAO Jianhu, KE Hao, ZHANG Hongmei. Comprehensive Detection and Repair Method for Long-period Tidal Gauge Observation Errors[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12):1490-1494. [3] 黄辰虎, 刘敏, 陈英凯, 等. 验潮站零点漂移检测及修订方法的改进[J]. 海洋测绘, 2015, 35(2):4-8. HUANG Chenhu, LIU Min, CHEN Yingkai, et al. Improvement in Zero Drift Detecting and Amending for Tide Gauges[J]. Hydrographic Surveying and Charting, 2015, 35(2):4-8. [4] 柯灏, 赵建虎, 张红梅. 短潮位序列系统误差的探测及修复方法研究[J]. 武汉大学学报(信息科学版), 2012, 37(7):843-846. KE Hao, ZHAO Jianhu, ZHANG Hongmei. Study on the Detection and Repair Method of the Short-period Tidal Gauge Observation System Error[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):843-846. [5] 刘雷, 李宝森, 李冬, 等. 基于余水位订正的海洋潮位推算关键技术研究[J]. 海洋测绘, 2012, 32(2):11-14. LIU Lei, LI Baosen, LI Dong, et al. Sea Level Forecasting Based on Corrected Residual Sea Level[J]. Hydrographic Surveying and Charting, 2012, 32(2):11-14. [6] 周绍炜, 许坚, 张立华, 等. 基于余水位精化潮高模型的水位生成研究[J]. 海洋测绘, 2009, 29(6):30-33. ZHOU Shaowei, XU Jian, ZHANG Lihua, et al. Determining of Tidal Heights Based on Tidal Model Improved by Residual Water Levels[J]. Hydrographic Surveying and Charting, 2009, 29(6):30-33. [7] EL-DIASTY M, AL-HARBI S. Development of Wavelet Network Model for Accurate Water Levels Prediction with Meteorological Effects[J]. Applied Ocean Research, 2015, 53:228-235. [8] NITSURE S P, LONDHE S N, KHARE K C. Prediction of Sea Water Levels Using Wind Information and Soft Computing Techniques[J]. Applied Ocean Research, 2014, 47:344-351. [9] 吴富梅, 魏子卿, 李迎春. 大港验潮站潮汐分析与国家高程基准面变化[J]. 测绘学报, 2015, 44(7):709-716. DOI:10.11947/j.AGCS.2015.20140110. WU Fumei, WEI Ziqing, LI Yingchun. Analysis of Tidal Data for Dagang Tidal Gauge and Study of the Changes for the National Height Datum[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7):709-716. DOI:10.11947/j.AGCS.2015.20140110. [10] BUBLE G, BENNETT R A, HREINSDÓTTIR S. Tide Gauge and GPS Measurements of Crustal Motion and Sea Level Rise along the Eastern Margin of Adria[J]. Journal of Geophysical Research, 2010, 115(B2):102-109. DOI:10.1029/2008JB006155. [11] FENOGLIO-MARC L, SCHÖNE T, ILLIGNER J, et al. Sea Level Change and Vertical Motion from Satellite Altimetry, Tide Gauges and GPS in the Indonesian Region[J]. Marine Geodesy, 2012, 35(S1):137-150. [12] WÖPPELMANN G, MARCOS M. Coastal Sea Level Rise in Southern Europe and the Nonclimate Contribution of Vertical Land Motion[J]. Journal of Geophysical Research, 2012, 117(C1):C01007. DOI:10.1029/2011JC007469. [13] 焦文海, 魏子卿, 郭海荣, 等. 联合GPS基准站和验潮站数据确定海平面绝对变化[J]. 武汉大学学报(信息科学版), 2004, 29(10):901-904. JIAO Wenhai, WEI Ziqing, GUO Hairong, et al. Determination of the Absolute Rate of Sea Level by Using GPS Reference Station and Tide Gauge Data[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10):901-904. [14] 刘根友, 朱耀仲, 许厚泽, 等. GPS监测中国沿海验潮站垂直运动观测研究[J]. 武汉大学学报(信息科学版), 2005, 30(12):1044-1047, 1055. LIU Genyou, ZHU Yaozhong, XU Houze, et al. Study on Height Changes of Chinese Tide Gauges by GPS[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12):1044-1047, 1055. [15] 崔树红, 谢志仁, 钟鹤翔, 等. 利用T/P海面高度数据校验验潮站地面升降的初步研究[J]. 地球科学进展, 2005, 20(6):643-648. CUI Shuhong, XIE Zhiren, ZHONG Hexiang, et al. The Primary Researches that T/P Sea Height Data Is Used for Revised Ground Rise or Fall at the Tide Gauge Station[J]. Advances in Earth Science, 2005, 20(6):643-648. [16] 周东旭, 周兴华, 张化疑, 等. 利用GPS连续观测进行中国沿海验潮站地壳垂直形变分析[J]. 武汉大学学报(信息科学版), 2016, 41(4):516-522. ZHOU Dongxu, ZHOU Xinghua, ZHANG Huayi, et al. Analysis of the Vertical Deformation of China Coastal Tide Stations Using GPS Continuous Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4):516-522. [17] FOK H S, SHUM C K, YI Y C, et al. Evidences of Seasonal Variation in Altimetry Derived Ocean Tides in the Subarctic Ocean[J]. Terrestrial, Atmospheric and Oceanic Science, 2013, 24(4):605-613. [18] CHENG Yongcun, ANDERSEN O B. Multimission Empirical Ocean Tide Modeling for Shallow Waters and Polar Seas[J]. Journal of Geophysical Research, 2011, 116(C11):110-119. DOI:10.1029/2011JC007172. [19] LE PROVOST C, GENCO M L, LYARD F, et al. Spectroscopy of the World Ocean Tides from a Finite Element Hydrodynamic Model[J]. Journal of Geophysical Research, 1994, 99(C12):24777-24797. [20] LEFÈVRE F, LYARD F H, LE PROVOST C, et al. FES99:A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(9):1345-1356. [21] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the Global Ocean Tides:Modern Insights from FES2004[J]. Ocean Dynamics, 2006, 56(5-6):394-415. [22] EGBERT G D, EROFEEVA S Y. Efficient Inverse Modeling of Barotropic Ocean Tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2):183-204. [23] EGBERT G D, RAY R D. Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data[J]. Nature, 2000, 405(6788):775-778. [24] ANZENHOFER M, SHUM C K, RENTSH M. Coastal Altimetry and Applications[R]. Report No.464. Columbus:Ohio State University, 1999. [25] CHERNIAWSKY J Y, FOREMAN M G G, CRAWFORD W R, et al. Ocean Tides from TOPEX/Poseidon Sea Level Data[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(4):649-664. [26] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the Global Ocean Tides:Modern Insights from FES2004[J]. Ocean Dynamics, 2006, 56(5-6):394-415. [27] DESPORTES C, OBLIGIS E, EYMARD L. On the Wet Tropospheric Correction for Altimetry in Coastal Regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7):2139-2142. DOI:10.1109/TGRS.2006.888967. [28] FOK H S, BAKI IZ H, SHUM C K, et al. Evaluation of Ocean Tide Models used for Jason-2 Altimetry Corrections[J]. Marine Geodesy, 2010, 33(S1):285-303. [29] 暴景阳, 许军. 卫星测高数据的潮汐提取与建模应用[M]. 北京:测绘出版社, 2013. BAO Jingyang, XU Jun. Tide Analysis from Altimeter Data and the Establishment and Application of Tide Model[M]. Beijing:Surveying and Mapping Press, 2013. [30] 岳云飞, 王永刚, 何善方, 等. 基于FVCOM的温州近海潮汐潮流数值模拟[J]. 海洋科学进展, 2015, 33(2):142-154. YUE Yunfei, WANG Yonggang, HE Shanfang, et al. Numerical Simulation of Tide and Tidal Currents in the Wenzhou Offshore Based on FVCOM[J]. Advances in Marine Science, 2015, 33(2):142-154. [31] International Federation of Surveyors. FIG Guide on the Development of a Vertical Reference Surface for Hydrography[R]. FIG Special Publication No. 37. Copenhagen, Denmark:FIG, 2006. [32] WELLS D, KLEUSBERG A, VANICEK P. A Seamless Vertical-reference Surface for Acquisition, Management and Display (ECDIS) of Hydrographic Data[R]. New Brunswick:University of New Brunswick, 1996. [33] MARTIN R J, BROADBENT G J. Chart Datum for Hydrography[J]. The Hydrographic Journal, 2004, 112:9-14. [34] ELLMER W, GOFFINET P. Tidal Correction Using GPS-determination of the Chart Datum[C]//XXⅢ FIG Congress. Munich, Germany, 2006. [35] ADAMS R. Seamless Digital Data and Vertical Datums[C]//FIG Working Week 2003. Paris:[s.n.], 2003. [36] ILIFFE J C, ZIEBART M K, TURNER J F, et al. Accuracy of Vertical Datum Surfaces in Coastal and Offshore Zones[J]. Survey Review, 2013, 45(331):254-262. [37] PARKER B, MILBERT D, HESS K, et al. National VDatum:The Implementation of a National Vertical Datum Transformation Database[J]. Sea Technology, 2003, 44(9):10-15. [38] YANG Zizang, MYERS E P, WHITE S A. V Datum for Eastern Louisiana and Mississippi Coastal Waters:Tidal Datums, Marine Grids, and Sea Surface Topography[R]. Silver Spring, Maryland:NOAA, 2010. [39] DENG X, FEATHERSTONE W E, HWANG C, et al. Estimation of Contamination of ERS-2 and POSEIDON Satellite Radar Altimetry Close to the Coasts of Australia[J]. Marine Geodesy, 2002, 25(4):249-271. [40] LEE D H, YUN H S, JUNG H I, et al. Transformation of Vertical Datum Surface in the Coastal Area Using Hybrid Geoid Models[J]. Journal of Coastal Research, 2013, 2(65):1427-1432. [41] SLOBBE D C, KLEES R, GUNTER B C. Realization of a Consistent set of Vertical Reference Surfaces in Coastal Areas[J]. Journal of Geodesy, 2014, 88(6):601-615. [42] 付延光, 周兴华, 杨磊, 等. 中国南海北部潮汐主要分潮的变化趋势分析[J]. 海洋测绘, 2015, 35(1):14-17. FU Yanguang, ZHOU Xinghua, YANG Lei, et al. Variation Trends of Major Tidal Constituents along the Northern Coast of the South China Sea[J]. Hydrographic Surveying and Charting, 2015, 35(1):14-17. [43] 暴景阳, 许军. 中国沿岸验潮站潮汐调和常数的精度评估[J]. 海洋测绘, 2013, 33(1):1-4. BAO Jingyang, XU Jun. The Accuracy Evaluation of Harmonic Constants for Long Term Tidal Stations Along the Coast of China[J]. Hydrographic Surveying and Charting, 2013, 33(1):1-4. [44] 暴景阳, 刘雁春, 晁定波, 等. 中国沿岸主要验潮站海图深度基准面的计算与分析[J]. 武汉大学学报(信息科学版), 2006, 31(3):224-228. BAO Jingyang, LIU Yanchun, CHAO Dingbo, et al. Computations and Analyses of Chart Datum to Coastal Tide Gauges of China[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3):224-228. [45] 王冀, 刘克修. 关于海图深度基准面计算方法的若干问题[J]. 海洋测绘, 2002, 22(4):10-13. WANG Ji, LIU Kexiu. Some Problems in Calculating the Chart Datum in Accordance with the National Specifications and Standards[J]. Hydrographic Surveying and Charting, 2002, 22(4):10-13. [46] 暴景阳, 黄辰虎, 刘雁春, 等. 海图深度基准面的算法研究[J]. 海洋测绘, 2003, 23(1):8-12. BAO Jingyang, HUANG Chenhu, LIU Yanchun, et al. Research on the Algorithm for Chart Datum[J]. Hydrographic Surveying and Charting, 2003, 23(1):8-12. [47] 暴景阳, 许军, 崔杨. 调和常数及深度基准面的变化与历元订正[J]. 海洋测绘, 2013, 33(3):1-5. BAO Jingyang, XU Jun, CUI Yang. The Variation and Epoch Correction of Harmonic Constants and Chart Datum[J]. Hydrographic Surveying and Charting, 2013, 33(3):1-5. [48] 暴景阳, 章传银. 关于海洋垂直基准的讨论[J]. 测绘通报, 2001(6):10-11. BAO Jingyang, ZHANG Chuanyin. On the Sea and Ocean Vertical Datum[J]. Bulletin of Surveying and Mapping, 2001(6):10-11. [49] 柯灏. 海洋无缝垂直基准构建理论和方法研究[D]. 武汉:武汉大学, 2012. KE Hao. Research on the Theory and Implementation Method of Marine Seamless Vertical Reference Surface[D]. Wuhan:Wuhan University, 2012. [50] 孙翠羽. 海洋无缝垂直基准面建立方法研究——以渤海海域为例[D]. 青岛:山东科技大学, 2011. SUN Cuiyu. Study on the Method of Developing a Seamless Vertical Reference:Taking Bohai Sea as a Case Study[D]. Qingdao:Shandong University of Science and Technology, 2011. [51] 孙翠羽, 周兴华, 马飞虎, 等. 无缝垂直基准面偏差模型建立方法研究[J]. 测绘通报, 2010:52-56. SUN Cuiyu, ZHOU Xinghua, MA Feihu, et al. Study on the Establishment Method of Seamless Vertical Datum Deviation Model[J]. Bulletin of Surveying and Mapping, 2010:52-56. [52] 暴景阳, 翟国君, 许军. 海洋垂直基准及转换的技术途径分析[J]. 武汉大学学报(信息科学版), 2016, 41(1):52-57. BAO Jingyang, ZHAI Guojun, XU Jun. Vertical Datums and Their Transformation Approaches for Hydrography[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):52-57. [53] 金涛勇, 李建成, 姜卫平, 等. 基于多源卫星测高数据的新一代全球平均海面高模型[J]. 测绘学报, 2011, 40(6):723-729. JIN Taoyong, LI Jiancheng, JIANG Weiping, et al. The New Generation of Global Mean Sea Surface Height Model Based on Multi-Altimetric Data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6):723-729. |
| [1] | Xiaodong CHEN, Meng YANG, Yuan YUAN, Wei FENG, Jinway HWANG, Min ZHONG. Evaluation of the accuracy and spatial resolution of SWOT_02 marine gravity model in China's offshore regions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1031-1041. |
| [2] | Zhenhe ZHAI, Zhongmiao SUN, Jian MA, Bin GUAN, He HUANG, Mingda OUYANG, Lingyong HUANG, Zhiyong HUANG, Xingchen PAN, Shigeng YUAN, Shengli LIU, Sen LIU. Gravity field inversion from China ocean altimetry tandem satellites data and performance analysis [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 714-724. |
| [3] | Yunpeng WANG, Xiaogang LIU, Qi LI, Duan LI, Liu FANG. Construction of series ultra-high-degree Earth's gravity field models DQM2022 and their precision evaluation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1505-1516. |
| [4] | SUN Zhongmiao, ZHAI Zhenhe, GUAN Bin, RUAN Rengui, HUANG Lingyong. Preliminary verification of dual-satellite tandem altimetry on board [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 207-216. |
| [5] | GAO Xianwen, JIN Taoyong, LI Jiancheng. An improved retracker considering spatial and temporal characteristics of inland water level changes for SAR altimetry [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 217-230. |
| [6] | LI Qianqian, BAO Lifeng, WANG Yong. Analysis of altimetry-derived sea surface observation anomalies for 2022 eruption of Tonga submarine volcano [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 263-273. |
| [7] | LIU Huanling, YANG Weiran, ZHANG Fang, WEN Hanjiang, HU Minzhang, JIANG Tao, LIN Wenqi, LI Chenxi. Multi-scale analysis of gravity anomaly models in sea area [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 274-285. |
| [8] | Xukang XIE, Wei LI. Water level extraction algorithm based on adaptive weighting and deviation matching of multi-source satellite altimetry data [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2111-2124. |
| [9] | DANG Yamin, JIANG Tao, YANG Yuanxi, SUN Heping, JIANG Weiping, ZHU Jianjun, XUE Shuqiang, ZHANG Xiaohong, YU Baoguo, LUO Zhicai, LI Xingxing, XIAO Yun, ZHANG Chuanyin, ZHANG Baocheng, LI Zishen, FENG Wei, REN Xia, WANG Hu. Research progress of geodesy in China (2019—2023) [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1419-1436. |
| [10] | ZHAO Chuang, JIN Taoyong, QIN Pengbo, YANG Lianjun. An improved multi-surface function method with residual constraint for the fusion of shipborne and satellite altimetry derived gravity data [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 605-613. |
| [11] | FAN Diao, LI Shanshan, FENG Jinkai, HUANG Yan, FAN Haopeng, ZHANG Jinhui, LI Xinxing. Applying least square collocation method to predict seafloor topography in the unknown sea area [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2039-2053. |
| [12] | LI Yang, GUO Jinyun, SUN Yu, YUAN Jiajia, CHANG Xiaotao, ZHANG Hongri. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1768-1778. |
| [13] | GUO Jinyun, JIN Xin, BIAN Shaofeng, CHANG Xiaotao. Corrections of solid earth tide and ocean tide for measurement of deflection of the vertical [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1215-1224. |
| [14] | XU Tianhe, MU Dapeng, YAN Haoming, GUO Jinyun, YIN Peng. The causes of contemporary sea level rise over recent two decades: progress and challenge [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1294-1305. |
| [15] | SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||