[1] 余旭初, 冯伍法, 杨国鹏, 等. 高光谱影像分析与应用[M]. 北京:科学出版社, 2013:3-5. YU Xuchu, FENG Wufa, YANG Guopeng, et al. Hyperspectral image analysis and application[M]. Beijing:Science Press, 2013:3-5. [2] BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2):6-36. [3] MA Li, CRAWFORD M M, TIAN Jinwen. Local manifold learning-based k nearest-neighbor for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11):4099-4109. [4] CAMPS-VALLS G, BRUZZONE L. Kernel-based methods for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1351-1362. [5] SHI Lei, ZHANG Lefei, YANG Jie, et al. Supervised graph embedding for polarimetric SAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2):216-220. [6] LI Wei, CHEN Chen, SU Hongjun, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3681-3693. [7] CHEN Yi, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3973-3985. [8] BENEDIKTSSON J A, PALMASON J A, SVEINSSON J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491. [9] TARABALKA Y, FAUVEL M, CHANUSSOT J, et al. SVM-and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4):736-740. [10] LI Wei, CHEN Chen, SU Hongjun, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3681-3693. [11] JIA Sen, HU Jie, XIE Yao, et al. Gabor cube selection based multitask joint sparse representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3174-3187. [12] LI Shutao, SONG Weiwei, FANG Leyuan, et al. Deep learning for hyperspectral image classification:an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6690-6709. [13] CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [14] CHEN Yushi, ZHAO Xing, JIA Xiuping. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2381-2392. [15] HU Wei, HUANG Yangyu, WEI Li, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015:1-12. [16] ZHU Lin, CHEN Yushi, GHAMISI P, et al. Generative adversarial networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5046-5063. [17] MOU Lichao, GHAMISI P, ZHU Xiao xiang. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655. [18] LI Wei, WU Guodong, ZHANG Fan, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):844-853. [19] SINGHAL V, AGGARWAL H K, TARIYAL S, et al. Discriminative robust deep dictionary learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5274-5283. [20] MARIO H J, PAOLETTI M E, JAVIER P, et al. Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach[J]. IEEE Transactions on Geoence and Remote Sensing, 2018(1):1-22. [21] JIAO Licheng, LIANG Miaomiao, CHEN Huan, et al. Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5585-5599. [22] CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251. [23] 刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1):53-63.DOI:10.11947/j.AGCS.2019.20170578. LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):53-63.DOI:10.11947/j.AGCS.2019.20170578. [24] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1):61-80. [25] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs:extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3):83-98. [26] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. International Conference on Learning Representations, 2017(1):1-14. [27] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [28] GHAMISI P, PLAZA J, CHEN Yushi, et al. Advanced spectral classifiers for hyperspectral images:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):8-32. [29] WANG Liguo, HAO Siyuan, WANG Qunming, et al. Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97:123-137. [30] ZHAN Y, HU D, WANG Y, et al. Semisupervised hyperspectral image classification based on generative adversarial networks[J]. IEEE Geoence and Remote Sensing Letters, 2018, 15(2):1-5. [31] LIU Bing, YU Xuchu, YU Anzhu, et al. Deep few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2290-2304. [32] TEBALDINI Stefano, YANG Xinwei, BAI Yu, et al.Progresses on SAR remote sensing of tropical forests:forest biomass retrieval and analysis of changing weather conditions[J].Journal of Geodesy and Geoinformation Science,2021,4(1):88-93. [33] LIU Zhaoyan, TANG Lingli, LI Chuanrong, et al.T-S fuzzy remote sensing monitoring model of snail distribution by Landsat 8 and Sentinel 2 data[J].Journal of Geodesy and Geoinformation Science,2020,3(4):118-125. |