Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (2): 159-168.doi: 10.11947/j.AGCS.2022.20210060
• Geodesy and Navigation • Next Articles
ZHAO Qingzhi1, DU Zheng1, YAO Wanqiang1, YAO Yibin2
Received:2021-01-27
Revised:2021-05-21
Published:2022-02-28
Supported by:CLC Number:
ZHAO Qingzhi, DU Zheng, YAO Wanqiang, YAO Yibin. The MERSI/FY-3A PWV correction method based on GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 159-168.
| [1] YAO Yibin, SUN Zhangyu, XU Chaoqian. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-Earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):1-11. DOI:10.11947/j.JGGS.2020.0101. [2] 柳典, 刘晓阳. 地基GPS遥感观测北京地区水汽变化特征[J]. 应用气象学报, 2009, 20(3):346-353. LIU Dian, LIU Xiaoyang. Variation features of atmospheric precipitable water vapor derived from ground-based GPS in Beijing[J]. Journal of Applied Meteorological Science, 2009, 20(3):346-353. [3] CHAHINE M T. The hydrological cycle and its influence on climate[J]. Nature, 1992, 359(6394):373-380. [4] 黄良珂, 彭华, 刘立龙, 等. 顾及垂直递减率函数的中国区域大气加权平均温度模型[J]. 测绘学报, 2020, 49(4):432-442. DOI:10.11947/j.AGCS.2020.20190168. HUANG Liangke, PENG Hua, LIU Lilong, et al. An empirical atmospheric weighted mean temperature model considering the lapse rate function for China[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):432-442. DOI:10.11947/j.AGCS.2020.20190168. [5] DURRE I, VOSE R S, WUERTZ D B. Overview of the integrated global radiosonde archive[J]. Journal of Climate, 2006, 19(1):53-68. [6] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [7] SÁNCHEZ J L, POSADA R, GARCÍA-ORTEGA E, et al. A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by means of a ground-based microwave radiometer[J]. Atmospheric Research, 2013, 122:43-54. [8] LI Xia, ZHANG Lei, CAO Xianjie, et al. Retrieval of precipitable water vapor using MFRSR and comparison with other multisensors over the semi-arid area of northwest China[J]. Atmospheric Research, 2016, 172-173:83-94. [9] WANG Min, FANG Xin, HU Shunxing, et al. Variation characteristics of water vapor distribution during 2000-2008 over Hefei (31.9°N, 117.2°E) observed by L625 LiDAR[J]. Atmospheric Research, 2015, 164-165:1-8. [10] HALTHORE R N, ECK T F, HOLBEN B N, et al. Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D4):4343-4352. [11] KAUFMAN Y J, GAO B C. Remote sensing of water vapor in the near IR from EOS/MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):871-884. [12] NELSON R R, CRISP D, OTT L E, et al. High-accuracy measurements of total column water vapor from the Orbiting Carbon Observatory-2[J]. Geophysical Research Letters, 2016, 43(23):12261-12269. [13] 施闯, 张卫星, 曹云昌, 等. 基于北斗/GNSS的中国-中南半岛地区大气水汽气候特征及同降水的相关分析[J]. 测绘学报, 2020, 49(9):1112-1119. DOI:10.11947/j.AGCS.2020.20200339. SHI Chuang, ZHANG Weixing, CAO Yunchang, et al. Atmospheric water vapor climatological characteristics over Indo-China region based on BeiDou/GNSS and relationships with precipitation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1112-1119. DOI:10.11947/j.AGCS.2020.20200339. [14] ZHANG Hongxing, YUAN Yunbin, LI Wei, et al. GPS PPP-derived precipitable water vapor retrieval based on Tm/Ps from multiple sources of meteorological data sets in China[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(8):4165-4183. [15] 姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. YAO Yibin, ZHANG Shun, KONG Jian. Research progress and prospect of GNSS space environment science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. [16] LEE S W, KOUBA J, SCHUTZ B, et al. Monitoring precipitable water vapor in real-time using global navigation satellite systems[J]. Journal of Geodesy, 2013, 87(10-12):923-934. [17] CHEN Biyan, LIU Zhizhao. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(19):11442-11462. [18] 刘备, 王勇, 娄泽生, 等. CMONOC观测约束下的中国大陆地区MODIS PWV校正[J]. 测绘学报, 2019, 48(10):1207-1215. DOI:10.11947/j.AGCS.2019.20180386. LIU Bei, WANG Yong, LOU Zesheng, et al. The MODIS PWV correction based on CMONOC in Chinese mainland[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1207-1215. DOI:10.11947/j.AGCS.2019.20180386. [19] 张俊东, 陈秀万, 李颖, 等. 基于GPS数据的MODIS近红外水汽改进反演算法研究[J]. 地理与地理信息科学, 2013, 29(2):40-44. ZHANG Jundong, CHEN Xiuwan, LI Ying, et al. Research on improved retrieval algorithm of MODIS Near-IR water vapor based on GPS data[J]. Geography and Geo-Information Science, 2013, 29(2):40-44. [20] 曹艳丰, 陈宝献, 陈秀万, 等. 基于GPS数据的MODIS大气可降水量反演精度提高模型[J]. 遥感信息, 2014, 29(2):23-27. CAO Yanfeng, CHEN Baoxian, CHEN Xiuwan, et al. A real-time accuracy model of MODIS PWV using GPS PWV data[J]. Remote Sensing Information, 2014, 29(2):23-27. [21] 方圣辉, 毕创, 乐源, 等. 利用GPS可降水量校正MODIS近红外水汽数据[J]. 测绘科学, 2016, 41(9):38-41. FANG Shenghui, BI Chuang, LE Yuan, et al. Calibration of MODIS near infrared vapor products using precipitable water vapor retrieved from GPS data[J]. Science of Surveying and Mapping, 2016, 41(9):38-41. [22] GUI Ke, CHE Huizheng, CHEN Quanliang, et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China[J]. Atmospheric Research, 2017, 197(3):461-473. [23] GONG Shaoqi, HAGAN D F T, ZHANG Cunjie. Analysis on precipitable water vapor over the Tibetan Plateau using FengYun-3A medium resolution spectral imager products[J]. Journal of Sensors, 2019, 2019(12):607-619. [24] DU Zheng, ZHAO Qingzhi, YAO Wanqiang, et al. Improved GPT2w (IGPT2w) model for site specific zenith tropospheric delay estimation in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 198(3):1052-1064. [25] SAASTAMOINEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[M]//HENRIKSEN S W, MANCINI A, CHOVITZ B H. The Use of Artificial Satellites for Geodesy Volume 15. Washington, D.C.:American Geophysical Union, 1972:247-251. [26] SUN Zhangyu, ZHANG Bao, YAO Yibin. An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions[J]. Earth and Space Science, 2019, 6(10):1926-1941. [27] PÉREZ-RAMÍREZ D, WHITEMAN D N, SMIRNOV A, et al. Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS, and radiosondes at ARM sites[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(15):9596-9613. [28] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182:85-92. [29] GONG Shaoqi, HAGAN D F, LU Jing, et al. Validation on MERSI/FY-3A precipitable water vapor product[J]. Advances in Space Research, 2018, 61(1):413-425. [30] GONG Shaoqi, HAGAN D F T, WU Xinyi, et al. Spatio-temporal analysis of precipitable water vapour over northwest china utilizing MERSI/FY-3A products[J]. International Journal of Remote Sensing, 2018, 39(10):3094-3110. [31] 杨军, 董超华, 卢乃锰, 等. 中国新一代极轨气象卫星——风云三号[J]. 气象学报, 2009, 67(4):501-509. YANG Jun, DONG Chaohua, LU Neimeng, et al. FY-3A:the new generation polar-orbiting meteorological satellite of China[J]. Acta Meteorologica Sinica, 2019, 67(4):501-509. [32] ZHANG Yonglin, CAI Changsheng, CHEN Biyan, et al. Consistency evaluation of precipitable water vapor derived from ERA5, ERA-Interim, GNSS, and radiosondes over China[J]. Radio Science, 2019, 54(7):561-571. [33] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597. [34] KLOS A, HUNEGNAW A, TEFERLE F N, et al. Statistical significance of trends in zenith wet delay from re-processed GPS solutions[J]. GPS Solutions, 2018, 22(2):51-62. [35] ZHAO Qingzhi, MA Xiongwei, YAO Wanqiang, et al. A drought monitoring method based on precipitable water vapor and precipitation[J]. Journal of Climate, 2020, 33(24):10727-10741. [36] LI Xueying, LONG Di. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach[J]. Remote Sensing of Environment, 2020, 248(10):111-122. [37] YAO Yibin, XU Xingyu, XU Chaoqian, et al. Establishment of a real-time local tropospheric fusion model[J]. Remote Sensing, 2019, 11(11):1321-1336. |
| [1] | Dianpeng SU, Bin WANG, Xiaozheng MAI, Huang MENG, Chao QI, Fanlin YANG. Calibration of placement angle errors of airborne bathymetric LiDAR without field control [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1042-1053. |
| [2] | Daiwei ZHANG, Xuming GE, Han HU, Qing ZHU, Bo XU, Qiang WANG. Cross-modal sensor self-calibration method for highway point-line feature integrated mobile mapping system [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 760-772. |
| [3] | Jinbin ZHANG, Jun ZHU, Pei DANG, Yuxuan ZHOU, Bowen YANG. Live-streaming geographic information service: remote immersive perception of on-site conditions based on VR panoramas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2276-2286. |
| [4] | Shuren GUO, Hongliang CAI, Weiguang GAO, Wei ZHOU, Changjiang GENG, Gang LI, Ming DONG, Chengeng SU, Kun JIANG, Yinan MENG, Lei CHEN, Junyang PAN, Kai LI, Qifen LI, Xiaomei TANG, Shuangna ZHANG, Xiaogong HU. A novel architecture of global navigation satellite system for accurate and trusted PNT services [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1934-1953. |
| [5] | Hailu CHEN, Yunzhong SHEN. GNSS-assisted InSAR tropospheric delay correction model incorporating vertical stratification and turbulent components [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1786-1797. |
| [6] | Zuxun ZHANG, Xinbo ZHAO, Yansong DUAN. A block-wise polynomial distortion model for airborne composite large-format camera [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 52-63. |
| [7] | Dan ZHANG, Weifeng WANG, Guiping HUANG, Xinping WANG, Yanrong LIU, Zhanghong ZHAO. Measurement field error analysis and on site evaluation method for binocular stereo industrial photogrammetry system [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1725-1736. |
| [8] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
| [9] | JING Zhenhua, HU Xiuqing, LI Shuang. The positioning method of lunar observations by Jilin-1 Guangpu satellite [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 503-511. |
| [10] | Wenyuan ZHANG, Mingxin QI, Shubi ZHANG. A non-uniform discretization GNSS water vapor tomography refined method considering water vapor distributions [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2282-2294. |
| [11] | Qimin HE, Kefei ZHANG, Li LI, Dajun LIAN, Wei ZHAO, Guodong CHEN, Erjiang FU, Rui WANG. A four-parameter model for estimating typhoon motion states based on time difference of PWV arrival [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2125-2137. |
| [12] | Yunkai DENG, Yu WANG, Kaiyu LIU, Naiming OU, Dacheng LIU, Heng ZHANG, Jili WANG. Key technologies for spaceborne SAR payload of LuTan-1 satellite system [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1881-1895. |
| [13] | WANG Jianrong, YANG Yuanxi, LU Xueliang, MIAO Yuzhe. Stereo image positioning technology without ground control points assisted by optical axis position measurement data [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 1-7. |
| [14] | QIAN Chuang, ZHANG Hongjuan, LI Wenzhuo, LIU Hui, LI Bijun. A LiDAR/IMU spatial calibration method based on LiDAR labels and occupancy grid map [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1469-1479. |
| [15] | ZHANG Shuo, WEN Bo, ZHANG Jianli, QI Chen, PENG Song, LIU Shaochuang, JIA Yang, YAN Yongzhe, MA Youqing, YANG Huan, LI Hao, WU Yunjia, XIE Wanrong. Self-calibration of Zhurong Mars rover's stereo vision system [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 780-788. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||