[1] YAO Yibin, SUN Zhangyu, XU Chaoqian. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-Earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):1-11. DOI:10.11947/j.JGGS.2020.0101. [2] 柳典, 刘晓阳. 地基GPS遥感观测北京地区水汽变化特征[J]. 应用气象学报, 2009, 20(3):346-353. LIU Dian, LIU Xiaoyang. Variation features of atmospheric precipitable water vapor derived from ground-based GPS in Beijing[J]. Journal of Applied Meteorological Science, 2009, 20(3):346-353. [3] CHAHINE M T. The hydrological cycle and its influence on climate[J]. Nature, 1992, 359(6394):373-380. [4] 黄良珂, 彭华, 刘立龙, 等. 顾及垂直递减率函数的中国区域大气加权平均温度模型[J]. 测绘学报, 2020, 49(4):432-442. DOI:10.11947/j.AGCS.2020.20190168. HUANG Liangke, PENG Hua, LIU Lilong, et al. An empirical atmospheric weighted mean temperature model considering the lapse rate function for China[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):432-442. DOI:10.11947/j.AGCS.2020.20190168. [5] DURRE I, VOSE R S, WUERTZ D B. Overview of the integrated global radiosonde archive[J]. Journal of Climate, 2006, 19(1):53-68. [6] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [7] SÁNCHEZ J L, POSADA R, GARCÍA-ORTEGA E, et al. A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by means of a ground-based microwave radiometer[J]. Atmospheric Research, 2013, 122:43-54. [8] LI Xia, ZHANG Lei, CAO Xianjie, et al. Retrieval of precipitable water vapor using MFRSR and comparison with other multisensors over the semi-arid area of northwest China[J]. Atmospheric Research, 2016, 172-173:83-94. [9] WANG Min, FANG Xin, HU Shunxing, et al. Variation characteristics of water vapor distribution during 2000-2008 over Hefei (31.9°N, 117.2°E) observed by L625 LiDAR[J]. Atmospheric Research, 2015, 164-165:1-8. [10] HALTHORE R N, ECK T F, HOLBEN B N, et al. Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D4):4343-4352. [11] KAUFMAN Y J, GAO B C. Remote sensing of water vapor in the near IR from EOS/MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):871-884. [12] NELSON R R, CRISP D, OTT L E, et al. High-accuracy measurements of total column water vapor from the Orbiting Carbon Observatory-2[J]. Geophysical Research Letters, 2016, 43(23):12261-12269. [13] 施闯, 张卫星, 曹云昌, 等. 基于北斗/GNSS的中国-中南半岛地区大气水汽气候特征及同降水的相关分析[J]. 测绘学报, 2020, 49(9):1112-1119. DOI:10.11947/j.AGCS.2020.20200339. SHI Chuang, ZHANG Weixing, CAO Yunchang, et al. Atmospheric water vapor climatological characteristics over Indo-China region based on BeiDou/GNSS and relationships with precipitation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1112-1119. DOI:10.11947/j.AGCS.2020.20200339. [14] ZHANG Hongxing, YUAN Yunbin, LI Wei, et al. GPS PPP-derived precipitable water vapor retrieval based on Tm/Ps from multiple sources of meteorological data sets in China[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(8):4165-4183. [15] 姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. YAO Yibin, ZHANG Shun, KONG Jian. Research progress and prospect of GNSS space environment science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. [16] LEE S W, KOUBA J, SCHUTZ B, et al. Monitoring precipitable water vapor in real-time using global navigation satellite systems[J]. Journal of Geodesy, 2013, 87(10-12):923-934. [17] CHEN Biyan, LIU Zhizhao. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(19):11442-11462. [18] 刘备, 王勇, 娄泽生, 等. CMONOC观测约束下的中国大陆地区MODIS PWV校正[J]. 测绘学报, 2019, 48(10):1207-1215. DOI:10.11947/j.AGCS.2019.20180386. LIU Bei, WANG Yong, LOU Zesheng, et al. The MODIS PWV correction based on CMONOC in Chinese mainland[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1207-1215. DOI:10.11947/j.AGCS.2019.20180386. [19] 张俊东, 陈秀万, 李颖, 等. 基于GPS数据的MODIS近红外水汽改进反演算法研究[J]. 地理与地理信息科学, 2013, 29(2):40-44. ZHANG Jundong, CHEN Xiuwan, LI Ying, et al. Research on improved retrieval algorithm of MODIS Near-IR water vapor based on GPS data[J]. Geography and Geo-Information Science, 2013, 29(2):40-44. [20] 曹艳丰, 陈宝献, 陈秀万, 等. 基于GPS数据的MODIS大气可降水量反演精度提高模型[J]. 遥感信息, 2014, 29(2):23-27. CAO Yanfeng, CHEN Baoxian, CHEN Xiuwan, et al. A real-time accuracy model of MODIS PWV using GPS PWV data[J]. Remote Sensing Information, 2014, 29(2):23-27. [21] 方圣辉, 毕创, 乐源, 等. 利用GPS可降水量校正MODIS近红外水汽数据[J]. 测绘科学, 2016, 41(9):38-41. FANG Shenghui, BI Chuang, LE Yuan, et al. Calibration of MODIS near infrared vapor products using precipitable water vapor retrieved from GPS data[J]. Science of Surveying and Mapping, 2016, 41(9):38-41. [22] GUI Ke, CHE Huizheng, CHEN Quanliang, et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China[J]. Atmospheric Research, 2017, 197(3):461-473. [23] GONG Shaoqi, HAGAN D F T, ZHANG Cunjie. Analysis on precipitable water vapor over the Tibetan Plateau using FengYun-3A medium resolution spectral imager products[J]. Journal of Sensors, 2019, 2019(12):607-619. [24] DU Zheng, ZHAO Qingzhi, YAO Wanqiang, et al. Improved GPT2w (IGPT2w) model for site specific zenith tropospheric delay estimation in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 198(3):1052-1064. [25] SAASTAMOINEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[M]//HENRIKSEN S W, MANCINI A, CHOVITZ B H. The Use of Artificial Satellites for Geodesy Volume 15. Washington, D.C.:American Geophysical Union, 1972:247-251. [26] SUN Zhangyu, ZHANG Bao, YAO Yibin. An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions[J]. Earth and Space Science, 2019, 6(10):1926-1941. [27] PÉREZ-RAMÍREZ D, WHITEMAN D N, SMIRNOV A, et al. Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS, and radiosondes at ARM sites[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(15):9596-9613. [28] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182:85-92. [29] GONG Shaoqi, HAGAN D F, LU Jing, et al. Validation on MERSI/FY-3A precipitable water vapor product[J]. Advances in Space Research, 2018, 61(1):413-425. [30] GONG Shaoqi, HAGAN D F T, WU Xinyi, et al. Spatio-temporal analysis of precipitable water vapour over northwest china utilizing MERSI/FY-3A products[J]. International Journal of Remote Sensing, 2018, 39(10):3094-3110. [31] 杨军, 董超华, 卢乃锰, 等. 中国新一代极轨气象卫星——风云三号[J]. 气象学报, 2009, 67(4):501-509. YANG Jun, DONG Chaohua, LU Neimeng, et al. FY-3A:the new generation polar-orbiting meteorological satellite of China[J]. Acta Meteorologica Sinica, 2019, 67(4):501-509. [32] ZHANG Yonglin, CAI Changsheng, CHEN Biyan, et al. Consistency evaluation of precipitable water vapor derived from ERA5, ERA-Interim, GNSS, and radiosondes over China[J]. Radio Science, 2019, 54(7):561-571. [33] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597. [34] KLOS A, HUNEGNAW A, TEFERLE F N, et al. Statistical significance of trends in zenith wet delay from re-processed GPS solutions[J]. GPS Solutions, 2018, 22(2):51-62. [35] ZHAO Qingzhi, MA Xiongwei, YAO Wanqiang, et al. A drought monitoring method based on precipitable water vapor and precipitation[J]. Journal of Climate, 2020, 33(24):10727-10741. [36] LI Xueying, LONG Di. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach[J]. Remote Sensing of Environment, 2020, 248(10):111-122. [37] YAO Yibin, XU Xingyu, XU Chaoqian, et al. Establishment of a real-time local tropospheric fusion model[J]. Remote Sensing, 2019, 11(11):1321-1336. |