Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1458-1475.doi: 10.11947/j.AGCS.2022.20220156
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
LI Zhiwei1, XU Wenbin1, HU Jun1, FENG Guangcai1, YANG Zefa1, LI Jia1, ZHANG Heng2, CHEN Qi2, ZHU Jianjun1, WANG Qijie1, ZHAO Rong3, DUAN Meng3
Received:
2022-03-01
Revised:
2022-06-02
Published:
2022-08-13
Supported by:
CLC Number:
LI Zhiwei, XU Wenbin, HU Jun, FENG Guangcai, YANG Zefa, LI Jia, ZHANG Heng, CHEN Qi, ZHU Jianjun, WANG Qijie, ZHAO Rong, DUAN Meng. Partial geoscience parameters inversion from InSAR observation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475.
[1] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191. [2] BVRGMANN R, ROSEN P A, FIELDING E J. Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):169-209. [3] HOOPER A, BEKAERT D, SPAANS K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514-517:1-13. [4] GOLDSTEIN R M, ENGELHARDT H, KAMB B, et al. Satellite radar interferometry for monitoring ice sheet motion:Application to an antarctic ice stream[J]. Science, 1993, 262(5139):1525-1530. [5] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142. [6] MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J]. Nature, 1995, 375(6532):567-570. [7] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3):333-382. [8] GRAHAM L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6):763-768. [9] FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2):RG2004. [10] RIZZOLI P, MARTONE M, GONZALEZ C, et al. Generation and performance assessment of the global TanDEM-X digital elevation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132:119-139. [11] CURLANDER J C, MCDONOUGH R N. Synthetic aperture radar:systems and signal processing[M]. New York:[s.n.], 1991. [12] ELACHI C. Spaceborne radar remote sensing:applications and techniques[M]. New York:IEEE, 1988. [13] GENS R, VAN GENDEREN J L. Review article SAR interferometry-issues, techniques, applications[J]. International Journal of Remote Sensing, 1996, 17(10):1803-1835. [14] CHEN C W, ZEBKER H A. Phase unwrapping for large SAR interferograms:statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1709-1719. [15] LI Zhiwei, CAO Yunmeng, WEI Jianchao, et al. Time-series InSAR ground deformation monitoring:atmospheric delay modeling and estimating[J]. Earth-Science Reviews, 2019, 192:258-284. [16] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [17] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [18] HOOPER A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):96-106. [19] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [20] ZHANG Lei, DING Xiaoli, LU Zhong. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1):146-152. [21] WERNER C, WEGMULLER U, STROZZI T, et al. Interferometric point target analysis for deformation mapping[C]//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium (IEEE Cat. No. 03CH37477). Toulouse, France:IEEE, 2004:4362-4364. [22] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [23] DONG Jie, ZHANG Lu, TANG Minggao, et al. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers:a case study of Jiaju landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205:180-198. [24] PERISSIN D, WANG Teng. Time-series InSAR applications over urban areas in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(1):92-100. [25] YU Hanwen, LAN Yang, YUAN Zhihui, et al. Phase unwrapping in InSAR:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1):40-58. [26] COSTANTINI M. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):813-821. [27] FEIGL K L, SERGENT A, JACQ D. Estimation of an earthquake focal mechanism from a satellite radar interferogram:application to the December 4, 1992 Landers aftershock[J]. Geophysical Research Letters, 1995, 22(9):1037-1040. [28] OKADA Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the seismological society of America, 1992, 82(2):1018-1040. [29] 张红,王超,单新建,等.基于SAR差分干涉测量的张北-尚义地震震源参数反演[J].科学通报, 2001, 46(21):1837-1841. ZHANG Hong, WANG Chao, SHAN Xinjian, et al. Source parameter inversion of Zhangbei-Shangyi earthquake based on SAR differential interferometry[J]. Chinese Science Bulletin, 2001, 46(21):1837-1841. [30] FIALKO Y, SANDWELL D, AGNEW D, et al. Deformation on nearby faults induced by the 1999 Hector Mine earthquake[J]. Science, 2002, 297(5588):1858-1862. [31] FUNNING G J, PARSONS B, WRIGHT T J, et al. Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B9):B09406. [32] FENG Guangcai, HETLAND E A, DING Xiaoli, et al. Coseismic fault slip of the 2008Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements[J]. Geophysical Research Letters, 2010, 37(1):L01302. [33] HAMLING I J, HREINSDÓTTIR S, CLARK K, et al. Complex multifault rupture during the 2016Mw 7.8 Kaikōura earthquake, New Zealand[J]. Science, 2017, 356(6334):eaam7194. [34] HE Lijia, FENG Guangcai, WU Xiongxiao, et al. Coseismic and early postseismic slip models of the 2021Mw 7.4 Maduo earthquake (western China) estimated by space-based geodetic data[J]. Geophysical Research Letters, 2021, 48(24):e2021GL095860. [35] 冯万鹏,李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J].地球物理学进展, 2010, 25(4):1189-1196. FENG Wanpeng, LI Zhenhong. A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR data[J]. Progress in Geophysics, 2010, 25(4):1189-1196. [36] BAGNARDI M, HOOPER A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties:a Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7):2194-2211. [37] JÓNSSON S, ZEBKER H, SEGALL P, et al. Fault slip distribution of the 1999Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389. [38] MOGI K. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them[J]. Bulletin of the Earthquake Research Institute, 1958, 36:99-134. [39] YANG Xuemin, DAVIS P M, DIETERICH J H. Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing[J]. Journal of Geophysical Research:Solid Earth, 1988, 93(B5):4249-4257. [40] NIKKHOO M, WALTER T R, LUNDGREN P R, et al. Compound dislocation models (CDMs) for volcano deformation analyses[J]. Geophysical Journal International, 2017, 208(2):877-894. [41] XU Wenbin, XIE Lei, AOKI Y, et al. Volcano-wide deformation after the 2017 Erta Ale Dike Intrusion, Ethiopia, Observed with Radar Interferometry[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(8):e2020JB019562. [42] XU Wenbin, RUCH J, JÓNSSON S. Birth of two volcanic islands in the southern Red Sea[J]. Nature Communications, 2015, 6(1):7104. [43] RUCH J, WANG Teng, XU Wenbin, et al. Oblique rift opening revealed by reoccurring magma injection in central Iceland[J]. Nature Communications, 2016, 7(1):12352. [44] BIGGS J, WRIGHT T J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade[J]. Nature Communications, 2020, 11(1):3863. [45] GALLOWAY D L, BURBEY T J. Review:Regional land subsidence accompanying groundwater extraction[J]. Hydrogeology Journal, 2011, 19(8):1459-1486. [46] HOFFMANN J, GALLOWAY D L, ZEBKER H A. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California[J]. Water Resources Research, 2003, 39(2):1031. [47] GALLOWAY D L, HUDNUT K W, INGEBRITSEN S E, et al. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1998, 34(10):2573-2585. [48] AMELUNG F, GALLOWAY D L, BELL J W, et al. Sensing the ups and downs of Las Vegas:InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6):483-486. [49] JIANG L, BAI L, ZHAO Y, et al. Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, North China Plain[J]. Water Resources Research, 2018, 54(10):8234-8252. [50] CHAUSSARD E, MILILLO P, BVRGMANN R, et al. Remote sensing of ground deformation for monitoring groundwater management practices:application to the Santa Clara Valley during the 2012-2015 California drought[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(10):8566-8582. [51] PENG Mimi, LU Zhong, ZHAO Chaoying, et al. Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis[J]. Remote Sensing of Environment, 2022, 271:112894. [52] 许文斌,李志伟,丁晓利,等.利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J].地球物理学报, 2012, 55(2):452-461. XU Wenbin, LI Zhiwei, DING Xiaoli, et al. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area[J]. Chinese Journal of Geophysics, 2012, 55(2):452-461. [53] CHEN Jingyi, KNIGHT R, ZEBKER H A, et al. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations[J]. Water Resources Research, 2016, 52(5):3623-3636. [54] BURBEY T J. Three-dimensional deformation and strain induced by municipal pumping, part 2:numerical analysis[J]. Journal of Hydrology, 2006, 330(3-4):422-434. [55] WU Jichun, SHI Xiaoqing, YE Shujun, et al. Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China[J]. Journal of Hydrologic Engineering, 2010, 15(3):223-236. [56] ALGHAMDI A, HESSE M A, CHEN Jingyi, et al. Bayesian poroelastic aquifer characterization from InSAR surface deformation data. part I:maximum a posteriori estimate[J]. Water Resources Research, 2020, 56(10):e2020WR027391. [57] WEN Laifu, CHENG Jiulong, HUANG Shaohua, et al. Review of geophysical exploration on mined-out areas and water abundance[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(1):129-143. [58] YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. InSAR-based model parameter estimation of probability integral method and its application for predicting mining-induced horizontal and vertical displacements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4818-4832. [59] XIA Yuanping, WANG Yunjia, DU Sen, et al. Integration of D-InSAR and GIS technology for identifying illegal underground mining in Yangquan District, Shanxi Province, China[J]. Environmental Earth Sciences, 2018, 77(8):319. [60] XIA Yuanping, WANG Yunjia. InSAR-and PIM-based inclined goaf determination for illegal mining detection[J]. Remote Sensing, 2020, 12(23):3884. [61] DU Sen, WANG Yunjia, ZHENG Meinan, et al. Goaf locating based on InSAR and probability integration method[J]. Remote Sensing, 2019, 11(7):812. [62] BU Pu, LI Chaokui, LIAO Mengguang, et al. An approach for estimating underground-goaf boundaries based on combining DInSAR with a graphical method[J]. Advances in Civil Engineering, 2020, 2020:9375056. [63] YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135:112-126. [64] FAN Hongdong, LI Tengteng, GAO Yantao, et al. Characteristics inversion of underground goaf based on InSAR techniques and PIM[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103:102526. [65] 程国栋,赵林,李韧,等.青藏高原多年冻土特征、变化及影响[J].科学通报, 2019, 64(27):2783-2795. CHENG Guodong, ZHAO Lin, LI Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27):2783-2795. [66] LIU Lin, SCHAEFER K, ZHANG Tingjun, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J]. Journal of Geophysical Research:Earth Surface, 2012, 117(F1):F01005. [67] 赵蓉.基于SBAS-InSAR的冻土形变建模及活动层厚度反演研究[D].长沙:中南大学, 2014. ZHAO Rong. Permafrost deformation model establishment and active layer thickness inversion based on SBAS-InSAR[D].Changsha:Central South University, 2014. [68] LI Zhiwei, ZHAO Rong, HU Jun, et al. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils[J]. Scientific Reports, 2015, 5(1):15542. [69] WANG Chao, ZHANG Zhengjia, ZHANG Hong, et al. Active layer thickness retrieval of Qinghai-Tibet permafrost using the TerraSAR-X InSAR technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):4403-4413. [70] 徐晓明,吴青柏,张中琼.青藏高原多年冻土活动层厚度对气候变化的响应[J].冰川冻土, 2017, 39(1):1-8. XU Xiaoming, WU Qingbai, Zhang Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change[J]. Journal of Glaciology and Geocryology, 2017, 39(1):1-8. [71] ANISIMOV O A. Changing climate and permafrost distribution in the Soviet Arctic[J]. Physical Geography, 1989, 10(3):285-293. [72] SUN Zhe, ZHAO Lin, HU Guojie, et al. Modeling permafrost changes on the Qinghai-Tibetan Plateau from 1966 to 2100:a case study from two boreholes along the Qinghai-Tibet engineering corridor[J]. Permafrost and Periglacial Processes, 2020, 31(1):156-171. [73] GANGODAGAMAGE C, ROWLAND J C, HUBBARD S S, et al. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets[J]. Water Resources Research, 2014, 50(8):6339-6357. [74] WIDHALM B, BARTSCH A, LEIBMAN M, et al. Active-layer thickness estimation from X-band SAR backscatter intensity[J]. The Cryosphere, 2017, 11(1):483-496. [75] JIA Yuanyuan, KIM J W, SHUM C K, et al. Characterization of active layer thickening rate over the northern Qinghai-Tibetan Plateau permafrost region using ALOS interferometric synthetic aperture radar data, 2007-2009[J]. Remote Sensing, 2017, 9(1):84. [76] CHEN R H, MICHAELIDES R J, SULLIVAN T D, et al. Joint retrieval of soil moisture and permafrost active layer thickness using L-band insar and P-band polsar[C]//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, HI, USA:IEEE, 2020:4606-4609. [77] MEIER M F, POST A. What are glacier surges?[J]. Canadian Journal of Earth Sciences, 1969, 6(4):807-817. [78] SINGH V P, SINGH P, HARITASHYA U K. Encyclopedia of snow, ice and glaciers[M]. Dordrecht:Springer, 2011. [79] HU Jun, LI Zhiwei, LI Jia, et al. 3D movement mapping of the alpine glacier in Qinghai-Tibetan Plateau by integrating D-InSAR, MAI and offset-tracking:case study of the Dongkemadi Glacier[J]. Global and Planetary Change, 2014, 118:62-68. [80] GRAY A L, SHORT N, MATTAR K E, et al. Velocities and flux of the filchner ice shelf and its tributaries determined from speckle tracking interferometry[J]. Canadian Journal of Remote Sensing, 2001, 27(3):193-206. [81] STROZZI T, LUCKMAN A, MURRAY T, et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391. [82] LI Jia, LI Zhiwei, WU Lixin, et al. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake:use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique[J]. Journal of Hydrology, 2018, 559:596-608. [83] GUO Lei, LI Jia, LI Zhiwei, et al. The surge of the Hispar glacier, Central Karakoram:SAR 3D flow velocity time series and thickness changes[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(7):e2019JB018945. [84] QUINCEY D J, BRAUN M, GLASSER N F, et al. Karakoram glacier surge dynamics[J]. Geophysical Research Letters, 2011, 38(18):L18504. [85] YASUDA T, FURUYA M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet[J]. Journal of Geophysical Research:Earth Surface, 2015, 120(11):2393-2405. [86] WENDT A, MAYER C, LAMBRECHT A, et al. A glacier surge of Bivachny Glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities[J]. Remote Sensing, 2017, 9(4):388. [87] TRENBERTH K E, FASULLO J, SMITH L. Trends and variability in column-integrated atmospheric water vapor[J]. Climate Dynamics, 2005, 24(7):741-758. [88] HANSSEN R F, WECKWERTH T M, ZEBKER H A, et al. High-resolution water vapor mapping from interferometric radar measurements[J]. Science, 1999, 283(5406):1297-1299. [89] MATEUS P, NICO G, CATALÃO J. Can spaceborne SAR interferometry be used to study the temporal evolution of PWV?[J]. Atmospheric Research, 2013, 119:70-80. [90] LIU S. Satellite radar interferometry:Estimation of atmospheric delay[D]. Delft:Delft University of Technology, 2012. [91] ALSHAWAF F, HINZ S, MAYER M, et al. Constructing accurate maps of atmospheric water vapor by combining interferometric synthetic aperture radar and GNSS observations[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(4):1391-1403. [92] DUAN Meng, XU Bing, LI Zhiwei, et al. Non-differential water vapor estimation from SBAS-InSAR[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 204:105284. [93] PICHELLI E, FERRETTI R, CIMINI D, et al. InSAR water vapor data assimilation into mesoscale model MM5:technique and pilot study[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8):3859-3875. [94] MATEUS P, TOMÉ R, NICO G, et al. Three-dimensional variational assimilation of InSAR PWV using the WRFDA model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7323-7330. [95] CAO Yunmeng, LI Zhiwei, DUAN Meng, et al. High-resolution water vapor maps obtained by merging interferometric synthetic aperture radar and GPS measurements[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(1):e2020JD033430. [96] WANG Yuedong, FENG Guangcai, LI Zhiwei, et al. Retrieving the displacements of the Hutubi (China) underground gas storage during 2003-2020 from multi-track InSAR[J]. Remote Sensing of Environment, 2022, 268:112768. [97] VASCO D W, WICKS C JR, KARASAKI K, et al. Geodetic imaging:reservoir monitoring using satellite interferometry[J]. Geophysical Journal International, 2002, 149(3):555-571. [98] VASCO D W, FERRETTI A. On the use of quasi-static deformation to understand reservoir fluid flow[J]. Geophysics, 2005, 70(4):O13-O27. [99] VASCO D W, PUSKAS C M, SMITH R B, et al. Crustal deformation and source models of the Yellowstone volcanic field from geodetic data[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07402. [100] CAMACHO A G, GONZÁLEZ P J, FERNÁNDEZ J, et al. Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry:Application to deforming calderas[J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B10):B10401. [101] ZHAI Guang, SHIRZAEI M. Spatiotemporal model of Kīlauea's summit magmatic system inferred from InSAR time series and geometry-free time-dependent source inversion[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(7):5425-5446. [102] HU Jun, DING Xiaoli, ZHANG Lei, et al. Estimation of 3D surface displacement based on InSAR and deformation modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4):2007-2016. [103] LIU Xiaoge, HU Jun, SUN Qian, et al. Deriving 3D time-series ground deformations induced by underground fluid flows with InSAR:case study of sebei gas fields, China[J]. Remote Sensing, 2017, 9(11):1129. [104] WANG Leyang, CHEN Tao. Ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints[J]. Geodesy and Geodynamics, 2021, 12(5):336-346. [105] 蒋星达,张伟,杨辉.地球物理反演问题中的贝叶斯方法研究[J].地球与行星物理论评, 2022, 53(2):159-171. JIANG Xingda, ZHANG Wei, YANG Hui. The research on Bayesian inference for geophysical inversion[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(2):159-171. [106] LOHMAN R B, SIMONS M. Some thoughts on the use of InSAR data to constrain models of surface deformation:Noise structure and data downsampling[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(1):Q01007. [107] LIU Xiaoge, XU Wenbin. Logarithmic model joint inversion method for coseismic and postseismic slip:application to the 2017Mw 7.3 Sarpol Zahāb Earthquake, Iran[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(11):12034-12052. |
[1] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[2] | LOU Liangsheng, MIAO Jian, CHEN Junli, LIU Zhiming, ZHANG Xiaowei, ZHANG Hao. Key issues of InSAR system designment based on satellite formation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1372-1385. |
[3] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[4] | LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. |
[5] | MA Zhangfeng, JIANG Mi, LI Guihua, HUANG Teng. Effects of spatial network on time series InSAR phase unwrapping: take the Delaunay and Dijkstra networks for example [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 248-257. |
[6] | LIU Jihong, HU Jun, LI Zhiwei, ZHU Jianjun. Estimation of 3D coseismic deformation with InSAR: an improved SM-VCE method by window optimization [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1222-1239. |
[7] | LI Tao, TANG Xinming, GAO Xiaoming, CHEN Qianfu, ZHANG Xiang. Analysis and outlook of the operational topographic surveying and mapping capability of the SAR satellites [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 891-904. |
[8] | SHAO Kai, ZHANG Houzhe, QIN Xianping, HUANG Zhiyong, YI Bin, GU Defeng. Precise absolute and relative orbit determination for distributed InSAR satellite system [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 580-588. |
[9] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, FENG Can. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 600-611. |
[10] | LIU Qinghao, ZHANG Yonghong, DENG Min, WU Hongan, KANG Yonghui, WEI Jujie. Time series prediction method of large-scale surface subsidence based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404. |
[11] | LOU Liangsheng, LIU Zhiming, ZHANG Hao, QIAN Fangming, HUANG Yan. TH-2 satellite engineering design and implementation [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1252-1264. |
[12] | XIE Qinghua, ZHU Jianjun, WANG Changcheng, FU Haiqiang, ZHANG Bing. A S-RVoG model-based PolInSAR nonlinear complex least squares method for forest height inversion [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1303-1310. |
[13] | ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144. |
[14] | WANG Leyang, GAO Hua, FENG Guangcai. Triggering relations and stress effects analysis of two Mw>6 earthquakes in southwest Taiwan based on InSAR and GPS data [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1244-1253. |
[15] | GUO Shanchuan, ZHANG Shaoliang, HOU Huping, ZHU Qianlin, LIU Run. Monitoring ground deformation of non-urban areas based on temporarily coherent targets [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 106-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||