Acta Geodaetica et Cartographica Sinica ›› 2016, Vol. 45 ›› Issue (12): 1413-1422.doi: 10.11947/j.AGCS.2016.20160113
Previous Articles Next Articles
WANG Aichun1,2,3, XIANG Maosheng1, WANG Bingnan1
Received:
2016-03-25
Revised:
2016-10-19
Online:
2016-12-20
Published:
2017-01-02
Supported by:
CLC Number:
WANG Aichun, XIANG Maosheng, WANG Bingnan. Method of Monitoring Urban Area Deformation Based on Differential TomoSAR[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12): 1413-1422.
[1] SANDWELL D T,SICHOIX L. Topographic Phase Recovery from Stacked ERS Interferometry and A Low-resolution Digital Elevation Model[J].Journal of Geophysical Research:Atmospheres,2000,205(B12):28211-28222. [2] USAI S. A New Approach for Long Term Monitoring of Deformations by Differential SAR Interferometry[D]. Delft:Delft University of Technology, 2001. [3] FERRETTI A, PRATI C, ROCCA F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [4] HOOPER A, ZEBKER H, SEGALL P, et al. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophysical Research Letters, 2004, 31(23):L23611. [5] KAMPES B M.Radar Interferometry:Persistent Scatterer Technique[M]. Netherlands:Springer, 2006. [6] 李德仁, 廖明生, 王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版), 2004, 29(8):664-668. LI Deren, LIAO Mingsheng, WANG Yan. Progress of Permanent Scatterer Interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8):664-668. [7] BERARDINO R, FORNARO G, LANARI R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [8] 邓琳, 刘国祥, 张瑞, 等. 多平台MC-SBAS长时序建模与形变提取方法[J]. 测绘学报, 2016, 45(2):213-223. DOI:10.11947/j.AGCS.2016.20140614. DENG Lin, LIU Guoxiang, ZHANG Rui, et al. A Multi-platform MC-SBAS Method for Extracting Long Gterm Ground Deformation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2):213-223. DOI:10.11947/j.AGCS.2016.20140614. [9] 许文斌, 李志伟, 丁晓利, 等. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J]. 地球物理学报, 2012, 55(2):452-461. XU Wenbin, LI Zhiwei, DING Xiaoli, et al. Application of Small Baseline Subsets D-InSAR Technology to Estimate the Time Series Land Deformation and Aquifer Storage Coefficients of Los Angeles Area[J]. Chinese Journal of Geophysics, 2012, 55(2):452-461. [10] PERISSIN D, WANG Teng. Repeat-pass SAR Interferometry with Partially Coherent Targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):271-280. [11] 张永红, 龚文瑜, 张继贤, 等. 基于SAR干涉点目标分析技术的城市地表形变监测[J]. 测绘学报, 2009, 38(6):482-487. DOI:10.3321/j.issn:1001-1595.2009.06.003. ZHANG Yonghong, GONG Wenyu, ZHANG Jixian, et al. Monitoring Urban Subsidence Based on SAR Interferometric Point Target Analysis[J].Acta Geodaetica et Cartographica Sinica, 2009, 38(6):482-487. DOI:10.3321/j.issn:1001-1595.2009.06.003. [12] 王明洲, 李陶, 江利明, 等. 地表形变监测的改进相干目标法[J]. 测绘学报, 2016, 45(1):36-43. DOI:10.11947/j.AGCS.2016.20140617. WANG Mingzhou, LI Tao, JIANG Liming, et al. An Improved Coherent Targets Technology for Monitoring Surface Deformation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):36-43. DOI:10.11947/j.AGCS.2016.20140617. [13] HOOPER A. A Multi-temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302. [14] HETLAND E A, MUSÉ P, SIMONS M, et al. Multiscale InSAR Time Series(MinTS) Analysis of Surface Deformation[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B2):B02404. [15] LOMBARDINI F.Differential Tomography:A New Framework for SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1):37-44. [16] SERAFINO F, SOLDOVIERI F,LOMBARDINI F, et al. Singular Value Decomposition Applied to 4D SAR Imaging[C]//Proceedings of International Geoscience and Remote Sensing Symposium. Seoul, Korea:IEEE, 2005:2701-2704. [17] 任笑真, 杨汝良. 一种基于逆问题的差分干涉SAR层析成像方法[J]. 电子与信息学报, 2010, 32(3):582-586. REN Xiaozhen, YANG Ruliang. An Inverse Problem Based Approach for Differential SAR Tomography Imaging[J]. Journal of Electronics & Information Technology, 2010, 32(3):582-586. [18] 孙希龙, 余安喜, 董臻, 等. 一种差分SAR层析高分辨成像方法[J]. 电子与信息学报, 2012, 34(2):273-278. SUN Xilong, YU Anxi, DONG Zhen, et al. A High Resolution Imaging Method for Differential SAR Tomography[J]. Journal of Electronics & Information Technology, 2012, 34(2):273-278. [19] ZHU Xiaoxiang,BAMLER R. Superresolving SAR Tomography for Multidimensional Imaging of Urban Areas:Compressive Sensing-based TomoSAR Inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4):51-58. [20] WANG Yuanyuan, ZHU Xiaoxiang, BAMLER R. An Efficient Tomographic Inversion Approach for Urban Mapping Using Meter Resolution SAR Image Stacks[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7):1250-1254. [21] 廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2):123-129. LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2):123-129. [22] SIDDIQUE M A, HAJNSEK I, AERSOSPACE G, et al. Investigating the Combined Use of Differential SAR Tomography and PSI for Spatio-temporal Inversion[C]//Proceedings of 2015 Joint Urban Remote Sensing Event(JURSE). Lausanne, Switzerland:IEEE, 2015:1-4. [23] DONOHO D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [24] ZHU Xiaoxiang,BAMLER R. Super-resolution Power and Robustness of Compressive Sensing for Spectral Estimation with Application to Spaceborne Tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):247-258. [25] 张冰尘, 王万影, 毕辉, 等. 基于压缩多信号分类算法的森林区域极化SAR层析成像[J]. 电子与信息学报, 2015, 37(3):625-630. ZHANG Bingchen, WANG Wanying, BI Hui, et al. Polarimetric SAR Tomography for Forested Areas Based on Compressive Multiple Signal Classification[J]. Journal of Electronics & Information Technology, 2015, 37(3):625-630. [26] 王爱春, 向茂生. 基于块压缩感知的SAR层析成像方法[J]. 雷达学报, 2016, 5(1):57-64. WANG Aichun, XIANG Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1):57-64. [27] ELDAR Y C,KUPPINGER P,BOLCSKEI H.Block-sparse Signals:Uncertainty Relations and Efficient Recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6):3042-3054. [28] FU Yuli, LI Haifeng, ZHANG Qiheng, et al. Block-sparse Recovery via Redundant Block OMP[J]. Signal Processing, 2014, 97:162-171. |
[1] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[2] | LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan. Remote sensing image change detection fusion method integrating multi-scale feature attention [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. |
[3] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[4] | HUANG Mingyi, WU Jun, GAO Jiongli. Seamless spherical video generation for multi-head panoramic camera(MPC) [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 703-717. |
[5] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[6] | ZHANG Zhimin. Study of annual mass balance estimation in the Tibetan plateau glaciers based on remote sensing albedo [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 781-781. |
[7] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[8] | WANG Jingxue, LIU Suyan, WANG Weixi. A checking algorithm for pair-wise line matching based on collinearity constraint and matching redundancy [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 746-756. |
[9] | ZHAN Zongqian, HU Mengqi, MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 757-766. |
[10] | HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. |
[11] | DENG Ruizhe, CHEN Qihao, CHEN Qi, LIU Xiuguo. A deformable feature pyramid network for ship detection from remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 787-797. |
[12] | HUANG Liang. Research on change detection technology in multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 801-801. |
[13] | WU Wenhao, ZHANG Lei, LI Tao, LONG Sichun, DUAN Meng, ZHOU Zhiwei, ZHU Chuanguang, JIANG Tingchen. Coregistration scheme and error analysis of multi-mode SAR image based on geometric coregistration [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1439-1451. |
[14] | ZHAO Shengyin, AN Ru, ZHU Meiru. Urban change detection by aerial remote sensing using combining features of pixel-depth-object [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1452-1463. |
[15] | LIU Zhaoxin, ZHAO Liaoying, LI Xiaorun, CHEN Shuhan. Linear feature detection for hyperspectral subpixel mapping [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1464-1474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||