[1] 侯榜焕, 王锟, 姚敏立, 等. 面向高光谱图像分类的半监督空谱判别分析[J]. 测绘学报, 2017, 46(9):1098-1106. DOI:10.11947/j.AGCS.2017.20170121. HOU Banghuan, WANG Kun, YAO Minli, et al. Semi-supervised spatial-spectral discriminant analysis for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9):1098-1106. DOI:10.11947/j.AGCS.2017.20170121. [2] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459. DOI:10.11947/j.AGCS.2017.20170340. ZHANG Liangpei, WU Chen. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1447-1459. DOI:10.11947/j.AGCS.2017.20170340. [3] MENEZES J, POOJARY N. Dimensionality reduction and classification of hyperspetral images using DWT and DCCF[C]//Proceedings of the 3rd MEC International Conference on Big Data and Smart City. Muscat:IEEE, 2016. [4] CHEN Mulin, WANG Qi, LI Xuelong. Discriminant analysis with graph learning for hyperspectral image classification[J]. Remote Sensing, 2018, 10(6):836. [5] FENG Fubiao, LI Wei, DU Qian, et al. Dimensionality reduction of hyperspectral image with graph-based discriminant analysis considering spectral similarity[J]. Remote Sensing, 2017, 9(4):323. [6] 罗甫林. 高光谱图像稀疏流形学习方法研究[J]. 测绘学报, 2017, 46(3):400. DOI:10.11947/j.AGCS.2017.20160621. LUO Fulin. Sparse manifold learning for hyperspectral imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):400. DOI:10.11947/j.AGCS.2017.20160621. [7] WANG Hao, FAN Yuanyuan, FANG Baofu, et al. Generalized linear discriminant analysis based on Euclidean norm for gait recognition[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(4):569-576. [8] FAN Mingyu, ZHANG Xianqin, QIAO Hong, et al. Efficient isometric multi-manifold learning based on the self-organizing method[J]. Information Sciences, 2016(345):325-339. [9] 王东,张强,严亮.一种融合聚类的监督局部线性嵌入算法研究[J]. 半导体光学,2017,38(3):419-424. WANG Dong, ZHANG Qiang, YAN Liang. Study on supervised local linear embedding algorithm based on fusion clustering[J]. Semiconductor Optoelectronics, 2017, 38(3):419-424. [10] WANG Qi, MENG Zhaotie, LI Xuelong. Locality adaptive discriminant analysis for spectral-spatial classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11):2077-2081. [11] JIANG Quansheng, ZHU Qixin, WANG Bangfu, et al. Nonlinear machine fault detection by semi-supervised Laplacian eigenmaps[J]. Journal of Mechanical Science and Technology, 2017, 31(8):3697-3703. [12] DENG Yangjun, LI Hengchao, PAN Lei, et al. Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2):277-281. [13] KUMAR S, BHUYAN M K, LOVELL B C, et al. Hierarchical uncorrelated multiview discriminant locality preserving projection for multiview facial expression recognition[J]. Journal of Visual Communication and Image Representation, 2018(54):171-181. [14] TAŞKIN G, KAYA H, BRUZZONE L. Feature selection based on high dimensional model representation for hyperspectral images[J]. IEEE Transactions on Image Processing, 2017, 26(6):2918-2928. [15] LUO Fulin, HUANG Hong, DUAN Yule, et al. Local geometric structure feature for dimensionality reduction of hyperspectral imagery[J]. Remote Sensing, 2017, 9(8):790. [16] ZHOU Yicong, PENG Jiangtao, CHEN C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1082-1095. [17] YUAN Haoliang, TANG Yuanyan. Learning with hypergraph for hyperspectral image feature extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8):1695-1699. [18] DU Weibao, QIANG Wenwen, LÜ Meng, et al. Semi-supervised dimension reduction based on hypergraph embedding for hyperspectral images[J]. International Journal of Remote Sensing, 2018, 39(6):1696-1712. [19] HUANG Sheng, YANG Dan, GE Yongxin, et al. Discriminant hyper-Laplacian projections and its scalable extension for dimensionality reduction[J]. Neurocomputing, 2016, 173(2):145-153. [20] ZHANG Zhihong, BAI Lu, LIANG Yuanheng, et al. Joint hypergraph learning and sparse regression for feature selection[J]. Pattern Recognition, 2017(63):291-309. [21] WU Zebin, SHI Linlin, LI Jun, et al. GPU parallel implementation of spatially adaptive hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4):1131-1143. [22] 黄鸿, 郑新磊. 高光谱影像空-谱协同嵌入的地物分类算法[J]. 测绘学报, 2016, 45(8):964-972. DOI:10.11947/j.AGCS.2016.20150654. HUANG Hong, ZHENG Xinlei. Hyperspectral image land cover classification algorithm based on spatial-spectral coordination embedding[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):964-972. DOI:10.11947/j.AGCS.2016.20150654. [23] SUN Yubao, WANG Sujuan, LIU Qingshan, et al. Hypergraph embedding for spatial-spectral joint feature extraction in hyperspectral images[J]. Remote Sensing, 2017, 9(5):506. [24] SUN Tao, YIN Penghang, CHENG Lizhi, et al. Alternating direction method of multipliers with difference of convex functions[J]. Advances in Computational Mathematics, 2018, 44(3):723-744. [25] SUN Yanfeng, ZHAO Jiangang, HU Yongli. Supervised sparsity preserving projections for face recognition[C]//Proceedings of SPIE 8009, Third International Conference on Digital Image Processing. Chengdu, China:SPIE, 2011:357-366. |