[1] 童庆禧,张兵,郑兰芬. 高光谱遥感-原理、技术与应用[M]. 北京:高等教育出版社, 2006. TONG Qingxi, ZHANG Bing, ZHENG Lanfen. Hyperspectral Remote Sensing-principle, Technology and Application[M]. Beijing:Higher Education Press, 2006. [2] KEREKES J P, BAUM J E. Full-spectrum Spectral Imaging System Analytical Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):571-580. [3] USS M L, VOZEL B, LUKIN V V, et al. Local Signal-dependent Noise Variance Estimation from Hyperspectral Textural Images[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3):469-486. [4] 陈昭, 王斌, 张立明. 基于低秩张量分析的高光谱图像降维与分类[J]. 红外与毫米波学报, 2013, 32(6):569-575. CHEN Zhao,WANG Bin,ZHANG Liming.Dimensionality Reduction and Classification Based on Lower Rank Tensor Analysis for Hyperspectral Imagery[J]. Journal of Infrared and Millimeter Waves, 2013, 32(6):569-575. [5] 崔宾阁, 张杰, 马毅, 等.高分辨率图像辅助提取高光谱图像端元[J]. 遥感学报, 2014, 18(1):192-205. CUI Bin'ge, ZHANG Jie, MA Yi, et al. High-resolution Image-assisted Endmember Extraction of Hyperspectral Image[J]. Journal of Remote Sensing, 2014, 18(1):192-205. [6] 杨可明, 薛朝辉, 贾涛涛, 等. 高光谱影像小目标谐波分析探测模型[J]. 测绘学报, 2013, 42(1):34-43. YANG Keming,XUE Zhaohui,JIA Taotao,et al.A Harmonic Analysis Model of Small Target Detection of Hyperspectral Imager[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):34-43. [7] 黄芝娟, 唐超影, 陈跃庭, 等. 基于非局部相似性和低秩矩阵的遥感图像重构方法[J]. 光学学报, 2016, 36(6):0611002. HUANG Zhijuan,TANG Chaoying,CHEN Yueting,et al. Remote Sensing Image Reconstruction Method Based on Non-local Similarity and Low Rank Matrix[J]. Acta Optica Sinica, 2016, 36(6):0611002. [8] 秦振涛, 杨武年, 潘佩芬. 基于稀疏表示和自适应字典学习的"高分一号"遥感图像去噪[J]. 光电工程, 2013, 40(9):16-21. QIN Zhentao, YANG Wunian, PAN Peifen. The Remote Sensing Image Denoising of "The First Satellite of High Resolution" Based on Sparse Representation and Dictionary Learning[J]. Opto-Electronic Engineering, 2013, 40(9):16-21. [9] DABOV K, FOI A, KATKOVNIK V, et al. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095. [10] OTHMAN H, QIAN Shen'en. Noise Reduction of Hyperspectral Imagery Using Hybrid Spatial-spectral Derivative-domain Wavelet Shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2):397-408. [11] CHEN Guangyi, QIAN Shenen. Simultaneous Dimensionality Reduction and Denoising of Hyperspectral Imagery Using Bivariate Wavelet Shrinking and Principal Component Analysis[J]. Canadian Journal of Remote Sensing, 2008, 34(5):447-454. [12] YUAN Qiangqiang, ZHANG Liangpei, SHEN Huanfeng. Hyperspectral Image Denoising Employing A Spectral-Spatial Adaptive Total Variation Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3660-3677. [13] QIAN Yuntao, YE Minchao. Hyperspectral Imagery Restoration Using Nonlocal Spectral-spatial Structured Sparse Representation with Noise Estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):499-515. [14] MUTI D, BOURENNANE S, MAROT J. Lower-rank Tensor Approximation and Multiway Filtering[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30(3):1172-1204. [15] RENARD N, BOURENNANE S, BLANC-TALON J. Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2):138-142. [16] TUCKER L. Some Mathematical Notes on Three-mode Factor Analysis[J]. Psychometrika, 1966, 31(3):279-311. [17] LIU Xuefeng, BOURENNANE S,FOSSATI C. Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3717-3724. [18] PENG Yi, MENG Deyu,XU Zongben,et al.Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image Denoising[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH:IEEE, 2014:2949-2956. [19] 郭贤, 黄昕, 张乐飞, 等. 采用张量子空间的高光谱影像多维滤波算法[J]. 测绘学报, 2013, 42(2):253-259, 267. GUO Xian, HUANG Xin, ZHANG Lefei, et al. Tensor Subspace Based Multiway Filtering Algorithm for Hyperspec-tral Images[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):253-259, 267. [20] ARTHUR D, VASSILVITSKⅡ S. K-Means++:The Advantages of Careful Seeding[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans, Louisiana:ACM, 2007:1027-1035. [21] WAX M, KAILATH T. Detection of Signals by Information Theoretic Criteria[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(2):387-392. [22] CHAKRABARTI A,ZICKLER T.Statistics of Real-world Hyperspectral Images[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI:IEEE, 2011:193-200. [23] MAKITALO M, FOI A. Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise[J]. IEEE Transactions on Image Processing, 2013, 22(1):91-103. [24] AHARON M, ELAD M, BRUCKSTEIN A. rmK-SVD:An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. [25] MANJÓN J V, COUPÉ P, MARTíBONMATí L, et al. Adaptive Non-local Means Denoising of Mr Images with Spatially Varying Noise Levels[J]. Journal of Magnetic Resonance Imaging, 2010, 31(1):192-203. [26] MAGGIONI M,KATKOVNIK V,EGIAZARIAN K,et al. Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction[J]. IEEE Transactions on Image Processing, 2013, 22(1):119-133. [27] RENARD N, BOURENNANE S, BLANC-TALON J. Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2):138-142. [28] LIU Xuefeng, BOURENNANE S,FOSSATI C. Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3717-3724. [29] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image Quality Assessment:from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. [30] ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM:A Feature Similarity Index for Image Quality Assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8):2378-2386. |