测绘学报 ›› 2026, Vol. 55 ›› Issue (1): 154-168.doi: 10.11947/j.AGCS.2026.20250271

• 地图学与地理信息 • 上一篇    

耦合LLMs-KG的地下车站设施洪水脆弱性级联效应分析方法

李维炼1(), 冉晴晴1, 党沛1(), 朱军1, 朱庆1, 张恒2   

  1. 1.西南交通大学地球科学与工程学院,四川 成都 611756
    2.中国铁路设计集团有限公司,天津 300308
  • 收稿日期:2025-07-08 修回日期:2025-11-25 发布日期:2026-02-13
  • 通讯作者: 党沛 E-mail:vgewilliam@163.com;dangpei@my.swjtu.edu.cn
  • 作者简介:李维炼(1993—),男,博士,副研究员,研究方向为虚拟地理环境与三维可视化。E-mail:vgewilliam@163.com
  • 基金资助:
    国家重点研发计划(2024YFC3015404);国家自然科学基金(42571503; 42201446; 42201445);中国博士后科学基金(2024T170742; 2025M770237);国家资助博士后研究人员计划(GZC20232185);中央高校基本科研业务费专项(2682024CX095)

A coupled LLMs-KG method for cascading flood vulnerability analysis of underground station facilities

Weilian LI1(), Qingqing RAN1, Pei DANG1(), Jun ZHU1, Qing ZHU1, Heng ZHANG2   

  1. 1.Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
    2.China Railway Design Corporation, Tianjin 300308, China
  • Received:2025-07-08 Revised:2025-11-25 Published:2026-02-13
  • Contact: Pei DANG E-mail:vgewilliam@163.com;dangpei@my.swjtu.edu.cn
  • About author:LI Weilian (1993—), male, PhD, associate researcher, majors in virtual geographical environment and 3D visualization. E-mail: vgewilliam@163.com
  • Supported by:
    The National Key Research and Development Program of China(2024YFC3015404);The National Natural Science Foundation of China(42571503; 42201446; 42201445);Chinese Postdoctoral Science Foundation(2024T170742; 2025M770237);Postdoctoral Fellowship Program of CPSF(GZC20232185);The Fundamental Research Funds for the Central Universities(2682024CX095)

摘要:

地下车站内部设施通过物理连接、功能依赖和信息交互紧密耦合,这种耦合关系在洪水侵袭中呈现显著的级联效应,一旦某一关键设施受损,便可引发系统性风险。现有洪水脆弱性评估方法将各个设施视为独立单元,忽略了设施间的耦合作用关系和风险传导机制,难以准确刻画洪水对地下车站设施的破坏路径。因此,本文利用知识图谱(KG)语义关联和大语言模型(LLMs)的上下文推理能力,提出了一种耦合LLMs-KG的地下车站设施洪水脆弱性级联效应分析方法。首先,构建“对象-行为-状态”三域关联的地下车站设施知识图谱;其次,建立洪水演进-设施构件耦合的元胞自动机计算模型;然后,利用知识图谱约束大语言模型实现地下车站设施洪水脆弱性评估和级联效应推理;最后,选取北京市大兴区某大型地下车站为研究对象,结合DeepSeek-R1系列模型开展案例分析。结果表明,本文方法能够准确识别洪水作用下地下车站设施空间、功能属性变化及传播路径,推理过程具有良好的稳健性与可解释性。与专家预设基准级联路径相比,本文方法在节点匹配率和顺序匹配度方面呈现较高的准确性与逻辑一致性,相关成果能够为地下车站洪水针对性应急策略制定和系统韧性提升提供重要科学支撑。

关键词: 地下车站, 洪水脆弱性, 级联效应, 知识图谱, 大语言模型

Abstract:

Underground station facilities are tightly coupled through physical connections, functional dependencies, and information interactions. During flood events, such coupling relationships can result in cascading failures, where damage to a critical facility may trigger systemic risks. Existing flood vulnerability assessment methods often regard facilities as isolated units, ignoring the coupling effects and risk transmission mechanisms, making it difficult to accurately characterize the damage propagation paths. This paper proposes a flood vulnerability cascading analysis method for underground station facilities by integrating knowledge graphs (KGs) and large language models (LLMs). First, a three-domain knowledge graph consisting of “object-behavior-state” is constructed to represent facility relationships. Second, a cellular automaton model is developed to simulate flood evolution coupled with facility component interactions. Third, flood vulnerability assessment and cascading effect inference are performed by constraining the LLMs with the knowledge graph. Finally, a large-scale underground station in Daxing District, Beijing, is selected as a case study, along with the DeepSeek-R1 series model, for experimental analysis. The results show that the proposed method can effectively identify spatial and functional changes of facilities under flood scenarios and reveal risk propagation paths. The reasoning process exhibits strong robustness and high interpretability. Compared with expert-defined benchmark cascade paths, the method achieves higher accuracy and logical consistency in terms of node matching rates and sequence matching accuracy. The findings provide theoretical support and technical reference for the formulation of emergency strategies and the enhancement of system resilience in underground stations.

Key words: underground station, flood vulnerability, cascading effect, knowledge graph, large language models

中图分类号: