| [1] |
燕琴, 翟亮, 刘坡. 实景三维中国建设关键技术研究综述[J]. 测绘科学, 2023, 48(7): 1-9.
|
|
YAN Qin, ZHAI Liang, LIU Po. Review on the key technologies of 3D real scene construction in China[J]. Science of Surveying and Mapping, 2023, 48(7): 1-9.
|
| [2] |
曹全龙, 王会娜, 杜萌, 等. 地理实体模型构建与表达研究[J]. 时空信息学报, 2023, 30(1): 64-69.
|
|
CAO Quanlong, WANG Huina, DU Meng, et al. Research on construction and representation of geo-entity model[J]. Journal of Spatio-temporal Information, 2023, 30(1): 64-69.
|
| [3] |
黄哲琨, 钱海忠, 蔡中祥, 等. 基于图神经网络的多尺度网状河系分类匹配方法[J]. 测绘学报, 2025, 54(2): 371-384. DOI: .
doi: 10.11947/j.AGCS.2025.20240145
|
|
HUANG Zhekun, QIAN Haizhong, CAI Zhongxiang, et al. A multi-scale mesh river system classification matching method based on graph neural network[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 371-384. DOI: .
doi: 10.11947/j.AGCS.2025.20240145
|
| [4] |
张祖涛, 刘坡, 翟亮, 等. 黄山市地理实体统一标识体系设计与实现[J]. 测绘科学, 2025, 50(6): 157-167.
|
|
ZHANG Zutao, LIU Po, ZHAI Liang, et al. Design and implementation of unified identification system of basic geographic entity in mount Huangshan city[J]. Journal of Spatio-temporal Information, 2025, 50(6): 157-167.
|
| [5] |
FU Z, SUN Y, FAN L, et al. Multiscale and multifeature segmentation of high-spatial resolution remote sensing images using superpixels with mutual optimal strategy[J]. Remote Sensing, 2018, 10(8): 1289.
|
| [6] |
郝燕玲, 唐文静, 赵玉新, 等. 基于空间相似性的面实体匹配算法研究[J]. 测绘学报, 2008, 37(4): 501-506.
|
|
HAO Yanling, TANG Wenjing, ZHAO Yuxin, et al. Polygonal feature matching algorithm based on spatial similarity[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4): 501-506.
|
| [7] |
刘坡, 张宇, 龚建华. 中误差和邻近关系的多尺度面实体匹配算法研究[J]. 测绘学报, 2014, 43(4): 419-425.
|
|
LIU Po, ZHANG Yu, GONG Jianhua. Root mean square error and neighbouring relation matching approach for multi-scale polygonal feature[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 419-425.
|
| [8] |
石善球. 基于几何与属性匹配的地理信息数据融合更新方法[J]. 自然资源遥感, 2023, 35(1): 251-257.
|
|
SHI Shanqiu. A geographic data fusion and update method based on geometric and attribute matching[J]. Remote Sensing for Natural Resources, 2023, 35(1): 251-257.
|
| [9] |
赵东保, 盛业华, 张卡. 利用几何矩和叠置分析进行多尺度面要素自动匹配[J]. 武汉大学学报(信息科学版), 2011, 36(11): 1371-1375.
|
|
ZHAO Dongbao, SHENG Yehua, ZHANG Ka. An algorithm for muti-scale one-to-many polygonal feature matching based on geometry moments and overly analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1371-1375.
|
| [10] |
刘凌佳, 朱道也, 朱欣焰, 等. 基于MBR组合优化算法的多尺度面实体匹配方法[J]. 测绘学报, 2018, 47(5): 652-662. DOI: .
doi: 10.11947/j.AGCS.2018.20160625
|
|
LIU Lingjia, ZHU Daoye, ZHU Xinyan, et al. A multi-scale polygonal object matching method based on MBR combinatorial optimization algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 652-662. DOI: .
doi: 10.11947/j.AGCS.2018.20160625
|
| [11] |
刘贺, 郭黎, 李豪, 等. 面实体匹配的集成学习CatBoost方法[J]. 地球信息科学学报, 2022, 24(11): 2198-2211.
|
|
LIU He, GUO Li, LI Hao, et al. Matching polygonal entities with CatBoost ensemble method[J]. Journal of Geo-information Science, 2022, 24(11): 2198-2211.
|
| [12] |
ZHU D, CHENG C, ZHAI W, et al. Multiscale spatial polygonal object granularity factor matching method based on BPNN[J]. ISPRS International Journal of Geo-Information, 2021, 10(2): 75. DOI: .
doi: 10.3390/ijgi/0020075
|
| [13] |
FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100.
|
| [14] |
ALBELWI S. Survey on self-supervised learning: auxiliary pretext tasks and contrastive learning methods in imaging[J]. Entropy, 2022, 24(4): 551. DOI: .
doi: 10.3390/e24040551
|
| [15] |
RANI V, NABI S T, KUMAR M, et al. Self-supervised learning: a succinct review[J]. Archives of Computational Methods in Engineering, 2023, 30(4): 2761-2775.
|
| [16] |
CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering for unsupervised learning of visual features[C]//Proceedings of 2018 European conference on computer vision (ECCV). Munich: Springer, 2018: 132-149.
|
| [17] |
LEE D H. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks[C]//Proceedings of 2013 Workshop on Challenges in Representation Learning. Atlanta: ICML.2013, 3(2): 896.
|
| [18] |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of 2021 International Conference on Machine Learning. [S.l.]: PmLR, 2021: 8748-8763.
|
| [19] |
ZOU Y, YU Z, KUMAR B V K, et al. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training[C]//Proceedings of 2018 European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 289-305.
|
| [20] |
LI M, LI Q, WANG Y. Class balanced adaptive pseudo labeling for federated semi-supervised learning[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 16292-16301.
|
| [21] |
TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[J]. Advances in Neural Information Processing Systems, 2017: 30. DOI: .
doi: 10.48550/arXiv.1703.01780
|
| [22] |
XU M C, ZHOU Y, JIN C, et al. Bayesian pseudo labels: expectation maximization for robust and efficient semi-supervised segmentation[C]//Proceedings of 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 580-590.
|
| [23] |
LI L, SHUM H P H, BRECKON T P. Less is more: reducing task and model complexity for 3D point cloud semantic segmentation[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 9361-9371.
|
| [24] |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
|
| [25] |
ASLANI S, DAYAN M, STORELLI L, et al. Multi-branch convolutional neural network for multiple sclerosis lesion segmentation[J]. NeuroImage, 2019, 196: 1-15.
|
| [26] |
WU J, POLOCZEK M, WILSON A G, et al. Bayesian optimization with gradients[J]. Advances in Neural Information Processing Systems, 2017: 30. DOI: .
doi: 10.48550/arXiv.1703.04389
|
| [27] |
FEDUS W, ZOPH B, SHAZEER N. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity[J]. Journal of Machine Learning Research, 2022, 23(120): 1-39.
|
| [28] |
WEI R, FAN B, WANG Y, et al. MBNet: multi-branch network for extraction of rural homesteads based on aerial images[J]. Remote Sensing, 2022, 14(10): 2443. DOI: .
doi: 10.3390/rs14102443
|
| [29] |
KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient K-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.
|
| [30] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626.
|