
测绘学报 ›› 2014, Vol. 43 ›› Issue (10): 1099-1099.doi: 10.13485/j.cnki.11-2089.2014.0155
• 博士论文摘要 • 上一篇
张宝成
收稿日期:2014-07-14
修回日期:2014-07-14
出版日期:2014-10-20
发布日期:2014-10-24
通讯作者:
张宝成
E-mail:b.zhang@curtin.edu.au
ZHANG Baocheng
Received:2014-07-14
Revised:2014-07-14
Online:2014-10-20
Published:2014-10-24
Contact:
ZHANG Baocheng
E-mail:b.zhang@curtin.edu.au
摘要:
由美国GPS,俄罗斯Glonass,欧盟Galileo和中国“北斗”联合组成的全球导航卫星系统(Global Navigation Satellite System, GNSS)现已广泛地服务于地球和空间科学领域。最优地融合各类GNSS的观测数据,以快速、准确地估计位置、速度、时间、大气等参数是当前和未来阶段的研究热点。为实现此目的,本文对精密单点定位(Precise Point Positioning, PPP)技术实施了一系列的改进,完善了其模型算法,弥补了其技术缺陷,拓展了其应用范围。本文的研究主线安排如下:完善标准PPP的模型和算法。自被提出至今,PPP技术较多地采用“消电离层组合”的非差伪距和相位作为基本观测量。在观测域消除电离层将放大多路径效应,且不便于约束电离层延迟的时空变化。为此,本文提出基于GNSS原始观测值的“非组合”PPP概念,以克服上述不足。其中,电离层延迟被作为一类待估参数,其短期变化被合理地模型化为随机游走过程。同时,顾及了卫星姿态异常对改正两类系统误差(即相位绕转和卫星相位中心偏差)的影响。与标准PPP相比,非组合PPP的收敛时间较短(特别是高采样率观测数据),参数解可靠性更高。特别地,非组合PPP能提供准确的电离层信息,可作为利用GNSS研究电离层的一种新手段。丰富参考网的数据处理理论。与实时动态相对定位(RTK)相比,标准和非组合PPP存在一个共同的缺陷:无法实现整周模糊度固定,导致收敛时间过长。其根本原因在于,PPP的模糊度参数中吸收了卫星相位偏差,因此不再具备整周特性。为此,先后有研究提出利用全球或区域GNSS参考网估计卫星相位偏差,以用作PPP的额外改正信息。本文将现有参考网数据处理方法归纳为3类,推导了它们的模型等价性,并概括了它们的实施差异。特别地,本文详细地分析了3类方法的典型不足,如侧重于处理双频观测值,无法有效地提供电离层改正等,由此掣肘了它们在未来多频、多模观测条件下的适用性,同时也难以实现单频PPP模糊度固定。本文提出一种直接处理非差、非组合GNSS观测值的参考网函数模型,即非组合模型。为确保参数的可估性,采用S基理论识别了设计矩阵的列秩亏,以便于将部分参数定义为S基准,同时确保:1. 可估的(接收机和卫星)伪距和相位偏差仍均具备时不变特性;2. 可估的模糊度仍保留整周特性,互相独立且数量最多。在滤波实施中,当相邻历元所定义的S基准发生改变时,为确保滤波连续,还需要采用S转换对上一历元的滤波值实施等价变换。非组合模型具备处理不同范围(全球、广域和局域)参考网数据的能力。针对某类参考网,还可以灵活地处理单频、双频和多频数据。基于某局域网的双频GPS数据,本文利用非组合模型估计了卫星钟差、卫星相位偏差和电离层延迟,并重点考察了卫星相位偏差的稳定性和电离层延迟的内插效果。进而,分别验证了单频和双频PPP模糊度固定的效率和静、动态定位精度。此外,采用非组合模型分析若干零/短基线的双频GPS数据,估计了两台接收机的相对仪器偏差,并发现了其中较为显著的短期变化趋势,进而否定了有关接收机仪器偏差在1-3天内不随时间变化的一般性认知。概括而言,本文对PPP算法的研究紧扣未来多频、多模的应用需求,并确保能提供高精度的单频服务。从改善单测站PPP性能的角度出发,引申出一种更为实用的参考网数据处理模型,最终促进了单测站PPP模型算法的完善和应用范围的扩展。
中图分类号:
张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[J]. 测绘学报, 2014, 43(10): 1099-1099.
ZHANG Baocheng. Study on the Theoretical Methodology and Applications of Precise Point Positioning Using Undifferenced and Uncombined GNSS Data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10): 1099-1099.
| [1] | 李博峰, 陈龙, 袁雷童. GNSS多基线联合解算的高精度变形监测方法[J]. 测绘学报, 2025, 54(12): 2116-2128. |
| [2] | 耿涛, 李强, 程凌岳, 刘经南. GNSS与低轨卫星相对论效应改正方法[J]. 测绘学报, 2025, 54(12): 2129-2141. |
| [3] | 张守建, 曹新运, 葛玉龙, 沈飞. GLONASS-K与GLONASS-M+卫星姿态建模对卫星钟差估计和精密单点定位的影响[J]. 测绘学报, 2025, 54(12): 2142-2152. |
| [4] | 陈健, 王佳辉, 赵兴旺, 刘超, 刘春阳, 余学祥. BDS-3/Galileo星座多频弱电离层组合单历元RTK定位优化方法[J]. 测绘学报, 2025, 54(12): 2153-2167. |
| [5] | 李新瑞, 曲轩宇, 张勤, 舒宝, 孟岭恩, 许豪, 张双成, 黄观文, 武翰文, 王利. 数据驱动的PPP-RTK多径误差缓解方法及其在变形监测中的应用[J]. 测绘学报, 2025, 54(12): 2168-2181. |
| [6] | 高佳鑫, 隋心, 王长强, 徐爱功, 史政旭. 稳定静态点云簇支持的LiDAR SLAM回环检测方法[J]. 测绘学报, 2025, 54(12): 2194-2205. |
| [7] | 谷宇鹏, 刘万科, 张小红, 胡捷, 胡树杰, 雷维豪, 郑凯. 鱼眼图像支持的GNSS随机模型神经网络生成方法[J]. 测绘学报, 2025, 54(12): 2206-2218. |
| [8] | 陈志键. LiDAR SLAM/INS/UWB多源信息融合定位理论方法研究[J]. 测绘学报, 2025, 54(12): 2290-2290. |
| [9] | 饶维龙. 基于GRACE时变重力的青藏高原质量迁移与地壳变形研究[J]. 测绘学报, 2025, 54(12): 2291-2291. |
| [10] | 杨柳. 精密单点定位反演大气水汽关键模型研究[J]. 测绘学报, 2025, 54(12): 2294-2294. |
| [11] | 齐霁. 广义监督信号引导的可见光遥感影像解译基础模型[J]. 测绘学报, 2025, 54(12): 2296-2296. |
| [12] | 郭树人, 蔡洪亮, 高为广, 周巍, 耿长江, 李罡, 董明, 宿晨庚, 姜坤, 孟轶男, 陈雷, 潘军洋, 李凯, 李奇奋, 唐小妹, 张爽娜, 胡小工. 面向精确可信PNT服务的新型全球卫星导航系统架构[J]. 测绘学报, 2025, 54(11): 1934-1953. |
| [13] | 顾元元, 姚旭, 安璐, 乔刚, 郝彤. 基于高精度动态GNSS测线的中国南极内陆科考路线平整度分析与评估[J]. 测绘学报, 2025, 54(11): 1968-1979. |
| [14] | 宋瀚昀, 李昕, 黄观文, 李航. 无人机气压计测高模型精化及GNSS/SINS组合定位增强[J]. 测绘学报, 2025, 54(11): 1980-1991. |
| [15] | 李博. BDS-3/GNSS PPP-RTK增强产品估计和可信定位方法[J]. 测绘学报, 2025, 54(11): 2097-2097. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||