| [1] |
ASHBY N. Relativity and the global positioning system[J]. Physics Today, 2002, 55(5): 41-47.
|
| [2] |
SPILKER J J, AXELRAD P, PARKINSON B W, et al. Global positioning system: theory and applications, volume I[M]. Washington, D. C.: American Institute of Aeronautics and Astronautics, 1996: 623-625.
|
| [3] |
KOUBA J. Improved relativistic transformations in GPS[J]. GPS Solutions, 2004, 8(3): 170-180.
|
| [4] |
GAO Weiguang, XIE Xin, MENG Yinan, et al. Performance analysis of LEO augmented GNSS precise point positioning from in-orbitCENTISPACETM satellites[J]. Measurement Science and Technology, 2025, 36(1): 016338.
|
| [5] |
REID T G R. Orbital diversity for global navigation satellite systems[D]. Stanford: Stanford University, 2017.
|
| [6] |
XIE Xin, GENG Tao, ZHAO Qile, et al. Precise orbit determination for BDS-3 satellites using satellite-ground and inter-satellite link observations[J]. GPS Solutions, 2019, 23(2): 40.
|
| [7] |
LÜ Yifei, GENG Tao, ZHAO Qile, et al. Initial assessment of BDS-3 preliminary system signal-in-space range error[J]. GPS Solutions, 2019, 24(1): 16.
|
| [8] |
KOUBA J. Relativistic time transformations in GPS[J]. GPS Solutions, 2002, 5(4): 1-9.
|
| [9] |
HAN Chunhao, CAI Zhiwu. Relativistic effects to the onboard BeiDou satellite clocks[J]. NAVIGATION, 2019, 66(1): 49-53.
|
| [10] |
FORMICHELLA V. The J2 relativistic periodic component of GNSS satellite clocks[C]//Proceedings of 2018 IEEE International Frequency Control Symposium (IFCS). Olympic Valley: IEEE, 2018: 1-7.
|
| [11] |
王棣星, 李江伟, 陶清瑞. 部分相对论效应对北斗原子钟性能影响分析[J]. 测绘科学, 2022, 47(3): 29-36, 64.
|
|
WANG Dixing, LI Jiangwei, TAO Qingrui. Analysis of the influence of partial relativistic effect on the performance of BDS atomic clock[J]. Science of Surveying and Mapping, 2022, 47(3): 29-36, 64.
|
| [12] |
WANG Dixing, LI Min, XUE Huijie, et al. Analysis of the J2 relativistic effect on the performance of on-board atomic clocks[J]. GPS Solutions, 2023, 27(3): 114.
|
| [13] |
FANG Shanchuan, DU Lan, GAO Yunpeng, et al. Orbital elements ephemerides and interfaces design of LEO satellites[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 44-52.
|
| [14] |
REN Xia, YANG Yuanxi. Development of comprehensive PNT and resilient PNT[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 1-8.
|
| [15] |
YANG Yuanxi. Resilient PNT concept frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 1-7.
|
| [16] |
GE Haibo, WU Tianhao, LI Bofeng. Characteristics analysis and prediction of low Earth orbit (LEO) satellite clock corrections by using least-squares harmonic estimation[J]. GPS Solutions, 2022, 27(1): 38.
|
| [17] |
LI Wenwen, YANG Qiangwen, DU Xiaodong, et al. LEO augmented precise point positioning using real observations from two CENTISPACETM experimental satellites[J]. GPS Solutions, 2023, 28(1): 44.
|
| [18] |
ARSON K M, ASHBY N, HACKMAN C, et al. An assessment of relativistic effects for low Earth orbiters: the GRACE satellites[J]. Metrologia, 2007, 44(6): 484-490.
|
| [19] |
WU Meifang, WANG Kan, LIU Jiawei, et al. Relativistic effects of LEO satellite and its impact on clock prediction[J]. Measurement Science and Technology, 2023, 34(9): 095005.
|
| [20] |
IAU. IAU transactions. Vol. 11B[M]. Dordrecht: Kluwer Academic Publishers, 1991.
|
| [21] |
IERS. IERS conventions (2003): IERS technical note 32[R]. Frankfurt am Main: International Earth Rotation and Reference Systems Service, 2003.
|
| [22] |
PETIT G. Importance of a common framework for the realization of space-time reference systems[M]//Towards an integrated global geodetic observing system (IGGOS). Berlin: Springer, 2000: 3-7.
|
| [23] |
Global Positioning System Joint Program Office. Interface control document: NAVSTAR GPS space segment/navigation user interface: ICD-GPS-200[S]. [S. l.]: Global Positioning System Joint Program Office, 1993.
|
| [24] |
ASHBY N, SPILKER J J. Introduction to relativistic effects on the global positioning system[M]//Global positioning system: theory and applications, Vol. I. Washington: American Institute of Aeronautics and Astronautics, 1996: 623-697.
|
| [25] |
KOUBA J. Testing of general relativity with two Galileo satellites in eccentric orbits[J]. GPS Solutions, 2021, 25(4): 139.
|
| [26] |
KOUBA J. Relativity effects of Galileo passive hydrogen maser satellite clocks[J]. GPS Solutions, 2019, 23(4): 117.
|
| [27] |
张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. DOI: .
doi: 10.11947/j.AGCS.2019.20190176
|
|
ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087. DOI: .
doi: 10.11947/j.AGCS.2019.20190176
|
| [28] |
YANG Yuanxi, MAO Yue, REN Xia, et al. Demand and key technology for a LEO constellation as augmentation of satellite navigation systems[J]. Satellite Navigation, 2024, 5(1): 11.
|
| [29] |
袁俊军, 李凯, 唐成盼, 等. 面向精密位置服务的低轨卫星轨道预报精度分析[J]. 测绘学报, 2022, 51(5): 640-647. DOI: .
doi: 10.11947/j.AGCS.2022.20210473
|
|
YUAN Junjun, LI Kai, TANG Chengpan, et al. Accuracy analysis of LEO satellites orbit prediction for precise position service[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 640-647. DOI: .
doi: 10.11947/j.AGCS.2022.20210473
|
| [30] |
刘林, 胡松杰, 王歆. 航天动力学引论[M]. 南京: 南京大学出版社, 2006.
|
|
LIU Lin, HU Songjie, WANG Xin. An introduction of astrodynamics[M]. Nanjing: Nanjing University Press, 2006.
|
| [31] |
FOLCIK Z J, CEFOLA P J. A general solution to the second order J2 contribution in a mean equinoctial element semianalytic satellite theory[C]//Proceedings of 2012 Advanced Maui Optical and Space Surveillance Technologies Conference. Wailea: The Maui Economic Development Board, 2012: 45.
|
| [32] |
VASHKOV'YAK M A. Constructive-analytical solution of the problem of the secular evolution of polar satellite orbits[J]. Solar System Research, 2017, 51(4): 315-326.
|
| [33] |
WANG Yuan, SUN Xiucong, HE Lixuan, et al. An accurate and efficient second-order J2 model for the draper semianalytic satellite theory[J]. Acta Astronautica, 2024, 225: 169-185.
|