测绘学报 ›› 2022, Vol. 51 ›› Issue (8): 1744-1756.doi: 10.11947/j.AGCS.2022.20210503

• 协同精密定位 • 上一篇    下一篇

基于图优化的紧耦合双目视觉/惯性/激光雷达SLAM方法

王铉彬, 李星星, 廖健驰, 冯绍权, 李圣雨, 周宇轩   

  1. 武汉大学测绘学院, 湖北 武汉 430079
  • 收稿日期:2021-09-03 修回日期:2022-06-23 发布日期:2022-09-03
  • 通讯作者: 李星星 E-mail:xxli@sgg.whu.edu.cn
  • 作者简介:王铉彬(1996-),男,博士生,研究方向为多传感器融合导航。E-mail:xxli@sgg.whu.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB2501102);国家自然科学基金(41974027;42142037);中德科学中心-中德国际合作项目(M-0054)

Tightly-coupled stereo visual-inertial-LiDAR SLAM based on graph optimization

WANG Xuanbin, LI Xingxing, LIAO Jianchi, FENG Shaoquan, LI Shengyu, ZHOU Yuxuan   

  1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
  • Received:2021-09-03 Revised:2022-06-23 Published:2022-09-03
  • Supported by:
    The National Key Research and Development Program of China (No.2021YFB2501102);The National Natural Science Foundation of China (Nos.41974027;42142037);The Sino-German mobility programme (No.M-0054)

摘要: 基于单一传感器的同时定位与地图构建技术已经逐渐不能满足移动机器人、无人机及自动驾驶车辆等智能移动载体日益复杂的应用场景。为了进一步提升移动载体在复杂环境下的定位与建图性能,基于多传感器融合的SLAM技术成为目前研究的热点内容。本文提出了一种基于图优化的紧耦合双目视觉/惯性/激光雷达SLAM方法(S-VIL SLAM),该方法在视觉惯性系统中引入激光雷达原始观测,基于滑动窗口实现了IMU量测、视觉特征及激光点云特征的多源数据联合非线性优化。利用视觉与激光雷达的互补特性设计了视觉增强的激光雷达闭环优化算法,进一步提升了多源融合SLAM系统的全局定位与建图精度。为了验证本文算法的性能,利用自主搭建的集成多传感器的硬件采集平台在室外场景下进行了车载试验。试验结果表明,本文提出的紧耦合双目视觉/惯性/激光雷达里程计相比于紧耦合双目视觉惯性里程计和激光雷达里程计定位定姿性能显著提升,视觉增强的激光雷达闭环优化算法能够在大尺度场景下有效探测出轨迹中的闭环信息,并实现高精度的全局位姿图优化,经过闭环优化的点云地图具有良好的分辨率和全局一致性。

关键词: SLAM, 图优化, 视觉惯性里程计, 激光雷达, 多源融合

Abstract: Simultaneous localization and mapping (SLAM) technology based on a single sensor has gradually been unable to meet the increasingly complex application scenarios of the intelligent mobile carriers such as mobile robots,unmanned aerial vehicles,and self-driving cars.In order to further improve the localization and mapping performance of the mobile carriers in complex environments,multi-sensor fusion SLAM has become a hotspot of current research.In this contribution,we present a graph-optimization based and tightly-coupled stereo visual-inertial-LiDAR SLAM termed S-VIL SLAM,which integrates the LiDAR observations into a visual-inertial system.In this work,the IMU measurements,visual features,and laser point cloud features are jointly optimized in a sliding window.Moreover,a vision enhanced loop-closure algorithm of LiDAR is designed in this paper by using the complementary characteristics between vision and LiDAR,which further improves the global positioning and mapping accuracy of the multi-sensor fusion SLAM.We perform vehicle-borne experiments in outdoor environments to assess the performance of the proposed approach.The experimental results indicate that the proposed S-VIL odometry outperforms the state-of-the-art tightly coupled visual-inertial odometry (VIO) and LiDAR odometry in terms of pose estimation accuracy.The proposed loop-closure algorithm can effectively detect the loop closure of trajectories in large-scale scenes and achieve high-precision pose graph optimization.The point cloud map after loop closure optimization has good resolution and global consistency.

Key words: SLAM, graph optimization, VIO, LiDAR, multi-sensor fusion

中图分类号: