
测绘学报 ›› 2015, Vol. 44 ›› Issue (9): 1014-1021.doi: 10.11947/j.AGCS.2015.20140394
刘颖真1,2,3, 贾奋励4, 万刚4, 诸云强2, 霍超5
收稿日期:2014-04-23
修回日期:2015-01-24
出版日期:2015-09-24
发布日期:2015-09-24
作者简介:刘颖真(1981—),女,博士,研究方向为三维地理信息构建与人机交互。E-mail:liuyz@lreis.ac.cn
基金资助:LIU Yingzhen1,2,3, JIA Fenli4, WAN Gang4, ZHU Yunqiang2, HUO Chao5
Received:2014-04-23
Revised:2015-01-24
Online:2015-09-24
Published:2015-09-24
Contact:
诸云强,zhuyq@igsnrr.ac.cn
E-mail:zhuyq@igsnrr.ac.cn
Supported by:摘要: 由非专业弱关联影像自动化构建的三维地理空间模型是地理空间信息的重要来源。非专业弱关联影像在三维重建后必须经过地理配准,具有了绝对地理空间坐标系的位置信息及其准确的空间精度信息后,才有可能成为有效的地理空间信息。本文提出了一种以相机GPS模块获取的地理空间坐标为依据的理配准方法,依据影像的地理空间坐标和其三维重建后得到图像空间坐标的空间相似性,考虑GPS实时测量坐标精度较差和高程测量值不稳定的特点,采用RANSAC方法求解二维和三维两种空间变换参数及地理配准结果。利用差分GPS测量的影像位置数据对地理配准的精度进行了分析,给出了位移、旋转和缩放等误差的定量评估结果,分析了产生错误结果的原因。这种地理配准方法对数据采集设备要求低,过程无须人工参与。试验证明,在参与地理配准运算的照片数量较多时,配准结果正确、空间精度较高。
中图分类号:
刘颖真, 贾奋励, 万刚, 诸云强, 霍超. 非专业弱关联影像的地理配准及其精度评估[J]. 测绘学报, 2015, 44(9): 1014-1021.
LIU Yingzhen, JIA Fenli, WAN Gang, ZHU Yunqiang, HUO Chao. Geo-registration of Unprofessional and Weakly-related Image and Precision Evaluation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 1014-1021.
| [1] LIU Yingzhen, JIA Fenli, WAN Gang, et al. Construction and Application of 3D GIS Based on Unprofessionaland Weakly-Correlated Image[J]. Journal of Geomatics Science and Technology, 2014, 31(1): 73-78. (刘颖真, 贾奋励, 万刚, 等. 非专业弱关联影像构建三维GIS研究[J]. 测绘科学技术学报, 2014, 31(1): 73-78.) [2] KAMINSKY R S, SNAVELY N, SEITZ S M, et al. Alignment of 3D Point Clouds to Overhead Images[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Miami: IEEE, 2009:63-70. [3] WANG Chunpo, WILSON K, SNAVELY N. Accurate Georegistration of Point Clouds Using Geographic Data[C]//2013 International Conference on 3D Vision. Seattle: IEEE, 2013:33-40. [4] ROBERTSON D P, CIPOLLA R. Building Architectural Models from Many Views Using Map Constraints[C]//HEYDEN A,SPARR G,NIELSEN M, et al.The European Conference on Computer Vision 2002. Copenhagen: Springer, 2002: 155-169. [5] CHO P. 3D Organization of 2D Urban Imagery[C]//Applied Imagery Pattern Recognition Workshop. Washington: IEEE, 2007:3-8. [6] CHO P, SNAVELY N. Enhancing Large Urban Photo Collections with 3D LiDAR and GIS Data[J]. International Journal of Remote Sensing Applications, 2013, 3(1): 1-10. [7] CHO P, SNAVELY N. 3D Exploitation of 2D Ground-level & Aerial Imagery[C]//IEEE Applied Imagery Pattern Recognition Workshop. Washington, DC: IEEE, 2011:1-8. [8] NI K, SUN Z, BLISS N. 3D Image Geo-Registration Using Vision-based Modeling[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Prague: IEEE, 2011:1573-1576. [9] WENDEL A, IRSCHARA A, BISCHOF H. Automatic Alignment of 3D Reconstructions Using a Digital Surface Model[C]//IEEE Computer Society Computer Vision and Pattern Recognition Workshops. Colorado Springs: IEEE, 2011:29-36. [10] WENDEL A, BISCHOF H.Visual Localization for Micro Aerial Vehicles in Urban Outdoor Environments[M]//FARINELLA G M, BATTIATO S,CIPOLLA R. Advanced Topics in Computer Vision. London: Springer, 2013: 181-214. [11] WENDEL A, MAURER M, BISCHOF H. Visual Landmark-based Localization for MAVs Using Incremental Feature Updates[C]//2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission. Zurich: IEEE, 2012:278-285. [12] WENDEL A, IRSCHARA A, BISCHOF H. Natural Landmark-based Monocular Localization for MAVs[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011:5792-5799. [13] SHEN Yonglin, LIU Jun, WU Lixin, et al. Reconstruction of Disaster Scene from UAV Images and Flight-control Data[J]. Geography and Geo-Information Science, 2011, 27(6): 13-17. (沈永林, 刘军, 吴立新, 等. 基于无人机影像和飞控数据的灾场重建方法研究[J]. 地理与地理信息科学, 2011, 27(6): 13-17.) [14] FRAHM J M, HEINLY J, ZHENG Enliang, et al. Geo-Registered 3D Models from Crowdsourced Image Collections[J]. Geo-spatial Information Science, 2013, 16(1): 55-60. [15] ZHANG Liang, MA Hongchao, GAO Guang, et al. Automatic Registration of Urban Aerial Images with Airborne LiDAR Points Based on Line-point Similarity Invariants[J].Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 372-379. (张良, 马洪超, 高广, 等. 点、线相似不变性的城区航空影像与机载激光雷达点云自动配准[J]. 测绘学报, 2014, 43(4): 372-379.) [16] LI Tianwen. Theory and Application of GPS[M]. Beijing: Science Press, 2003:92-93. (李天文. GPS原理及应用[M]. 北京: 科学出版社, 2003:92-93.) [17] JIA Yunde. Machine Vision[M]. Beijing: Science Press, 2000:191-192. (贾云得. 机器视觉[M]. 北京: 科学出版社, 2000:191-192.) [18] SZELISKI R. Image Alignment and Stitching: A Tutorial[J]. Foundations and Trends in Computer Graphics and Vision, 2006, 2(1): 1-104. [19] FISCHLER M A, BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. [20] NIKON. GPS Unit GP-1[EB/OL].[2014-06-28]. http://imaging.nikon.com/lineup/accessory/camera/gp-1/spec.htm. [21] SOUTH GROUP. RTK Surveying System >>S82T[EB/OL].[2014-07-08]. http://www.southsurvey.com/public/xianxi.php?id=301. (南方测绘. RTK测量系统>>S82T[EB/OL].[2014]. http://www.southsurvey.com/public/xianxi.php?id=301.) |
| [1] | 邱越, 武芳, 翟仁健, 钱海忠, 黄哲琨, 李博. 面向匹配优化的多源建筑物实体级保形空间对齐模型[J]. 测绘学报, 2025, 54(12): 2262-2275. |
| [2] | 张锦彬, 朱军, 党沛, 周宇轩, 杨博文. 现场直播式地理信息服务:基于VR全景的现场实况远程临浸感知[J]. 测绘学报, 2025, 54(12): 2276-2286. |
| [3] | 张岩. 基于街景影像的城市功能区多尺度时空感知方法[J]. 测绘学报, 2025, 54(12): 2289-2289. |
| [4] | 曾进. 城市社会空间的空间大数据量化表达与分析方法:以深圳市为例[J]. 测绘学报, 2025, 54(12): 2292-2292. |
| [5] | 刘少俊. 基于手机信令数据的城市人群活动时空格局分析研究[J]. 测绘学报, 2025, 54(12): 2295-2295. |
| [6] | 吴超, 梁咏翔, 岳瀚, 崔远政, 黄波. 面向计数数据的时空地理加权泊松回归模型[J]. 测绘学报, 2025, 54(11): 2026-2039. |
| [7] | 王小龙, 王卓, 李精忠, 闫浩文. 微地图制图的空间方向关系转译法[J]. 测绘学报, 2025, 54(11): 2040-2051. |
| [8] | 胡鑫, 杨学习, 江一凡, 王宪彬, 丁晨, 谢顾然, 邓敏. 基于多智能体层次化协同的地理事件抽取与时空解析[J]. 测绘学报, 2025, 54(11): 2052-2067. |
| [9] | 李俊, 李朝奎, 黄磊, 冯媛媛. 高速公路广告牌巡检目标跟踪的改进ByteTrack算法[J]. 测绘学报, 2025, 54(11): 2068-2080. |
| [10] | 叶欣宇, 徐胜华, 刘纪平, 陈虹宇, 王琢璐, 李维炼. 基于时空因果推断的下一个兴趣点推荐[J]. 测绘学报, 2025, 54(11): 2081-2096. |
| [11] | 赵学胜, 谢文澜, 孙文彬. 空间格网互操作的研究进展与关键问题[J]. 测绘学报, 2025, 54(10): 1727-1740. |
| [12] | 高凡, 路威, 甘麟露, 章繁, 荣凤娟, 汤士涵. 智能驱动的并行地理计算引擎框架[J]. 测绘学报, 2025, 54(10): 1877-1892. |
| [13] | 吴浩宇, 朱庆, 丁雨淋, 鲍榴, 刘利. 数据模型知识协同驱动的隧道围岩高精度数字孪生建模方法[J]. 测绘学报, 2025, 54(10): 1893-1906. |
| [14] | 郝彧露. 时空数据驱动的城市区域火灾风险评估预测模型及应用[J]. 测绘学报, 2025, 54(10): 1910-1910. |
| [15] | 张付兵, 孙群, 徐青, 马京振, 黄文君, 陈若虚. 随机森林和图神经网络支持下的河系自动分级与选取方法[J]. 测绘学报, 2025, 54(9): 1697-1711. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||