[1] OPOLOT E. Application of remote sensing and geographical information systems in flood management:A review[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6(10):1884-1894. [2] 中华人民共和国住房和城乡建设部. GB 50286-2013堤防工程设计规范[S]. 北京:中国计划出版社, 2013. MOHURD (Ministry of Housing and Urban-Rural Development of the People's Republic of China). GB 50286-2013 Code for design of levee project[S]. Beijing:China Planning Press, 2013. [3] CASAS A, RIAÑO D, GREENBERG J, et al. Assessing levee stability with geometric parameters derived from airborne LiDAR[J]. Remote Sensing of Environment, 2012, 117:281-288. [4] DABBIRU L, AANSTOOS J V, YOUNAN N H. Earthen levee slide detection via automated analysis of synthetic aperture radar imagery[J]. Landslides, 2016, 13(4):643-652. [5] 熊淑娣, 万芳琦, 张蕾. 水库与堤防专题地理信息数据库建设[J]. 测绘科学, 2017, 42(1):71-75, 81. XIONG Shudi, WAN Fangqi, ZHANG Lei. Construction of thematic geographic information database of reservoir and dike[J]. Science of Surveying and Mapping, 2017, 42(1):71-75, 81. [6] 韩旭, 马贵生, 蒋园, 等. 国内外堤防工程数据库发展综述[J]. 人民长江, 2019, 50(S1):346-349. HAN Xu, MA Guisheng, JIANG Yuan, et al. Overview of the development of dike engineering database at home and abroad[J].Yangtze River,2019, 50(S1):346-349. [7] 杨俊杰, 徐志敏, 马瑞, 等. 基于GIS的堤防隐患探测分析系统及其应用[J]. 长江科学院院报, 2019, 36(10):141-145. YANG Junjie, XU Zhimin, MA Rui, et al. Research and application of detection and analysis system for hidden danger of dyke based on GIS[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10):141-145. [8] 杨子桐, 黄显峰, 方国华, 等. 基于云模型的堤防工程风险评价方法与应用[J]. 武汉大学学报(工学版), 2019, 52(7):572-580. YANG Zitong, HUANG Xianfeng, FANG Guohua, et al. Risk assessment method and application of embankment engineering based on cloud model[J]. Engineering Journal of Wuhan University, 2019, 52(7):572-580. [9] 张健, 潘斌, 陈文龙, 等. 基于雷达卫星时序分析技术的荆江沿岸堤防形变研究[J]. 长江科学院院报, 2019, 36(10):23-27. ZHANG Jian, PAN Bin, CHEN Wenlong, et al. Detection of deformation along Jingjiang segment of Yangtze River dyke based on radar satellite time series analysis technique[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10):23-27. [10] BLAKE L. Levee networks in low-lying coastal areas[J]. ACSM Bulletin, 2010, 246:10-16. [11] BAKULA K, OSTROWSKI W, SZENDER M, et al. Possibilities for using LiDAR and photogrammetric data obtained with an unmanned aerial vehicle for levee monitoring[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague:[s.n.], 2016. [12] BAKUŁA K, SALACH A, WZIATEK D Z, et al. Evaluation of the accuracy of LiDAR data acquired using a UAS for levee monitoring:Preliminary results[J]. International Journal of Remote Sensing, 2017, 38(8-10):2921-2937. [13] 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12):1507-1522. DOI:10.11947/j.AGCS.2019.20190446. CHEN Ruizhi, WANG Lei, LI Deren, et al. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1507-1522. DOI:10.11947/j.AGCS.2019.20190446. [14] JIANG Chen, ZHANG Shubi, CAO Yizhi, et al. A robust fault detection algorithm for the GNSS/INS integrated navigation systems[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):12-24. DOI:10.11947/j.JGGS.2020.0102. [15] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10):1509-1516. DOI:10.11947/j.AGCS.2017.20170351. YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1509-1516. DOI:10.11947/j.AGCS.2017.20170351. [16] 黄先锋, 李卉, 王潇, 等. 机载LiDAR数据滤波方法评述[J]. 测绘学报, 2009, 38(5):466-469. DOI:10.3321/j.issn:1001-1595.2009.05.014. HUANG Xianfeng, LI Hui, WANG Xiao, et al. Filter algorithms of airborne LiDAR data:Review and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5):466-469. DOI:10.3321/j.issn:1001-1595.2009.05.014. [17] 张兴福, 刘成. 综合EGM2008模型和SRTM/DTM2006.0剩余地形模型的GPS高程转换方法[J]. 测绘学报, 2012, 41(1):25-32. ZHANG Xingfu, LIU Cheng. The approach of GPS height transformation based on EGM2008 and SRTM/DTM2006.0 residual terrain model[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1):25-32. [18] ZHANG Yongjun, XIONG Xiaodong, WANG Mengqiu, et al. A fast aerial image matching method using airborne LiDAR point cloud and POS data[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):26-36. DOI:10.11947/j.JGGS.2019.0104. [19] THATCHER C, LIM S, PALASEANU-LOVEJOY M, et al. Lidar-based mapping of flood control levees in South Louisiana[J]. International Journal of Remote Sensing, 2016, 37(24):5708-5725. [20] BISHOP M J, MCGILL T E, TAYLOR S R. Processing of Laser Radar data for the extraction of an along-the-levee-crown elevation profile for levee remediation studies[C]//Proceedings of SPIE 5412, Laser Radar Technology and Applications IX. Orlando:SPIE, 2004. [21] PALASEANU-LOVEJOY M, THATCHER C A, BARRAS J A. Levee crest elevation profiles derived from airborne lidar-based high resolution digital elevation models in south Louisiana[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91:114-126. [22] CHOUNG Y. Accuracy assessment of the levee lines generated using lidar data acquired in the Nakdong River basins, South Korea[J]. Remote Sensing Letters, 2014, 5(10):853-861. [23] 姚春静, 游丽娜, 王英. 基于语义特征的堤防外坡激光脚点分割[J]. 遥感学报, 2015, 19(2):209-218. YAO Chunjing, YOU Li'na, WANG Ying. Embankment slope extraction based on semantic features using LiDAR data[J]. Journal of Remote Sensing, 2015, 19(2):209-218. [24] CHOUNG Y. Mapping levees using LiDAR data and multispectral orthoimages in the Nakdong River Basins, south Korea[J]. Remote Sensing, 2014, 6(9):8696-8717. [25] BISHOP M, DUNBAR J B, PEYMAN-DOVE L P. Integration of remote sensing (LIDAR, electromagnetic conductivity) and geologic data toward the condition assessment of levee systems[C]//Proceedings of SPIE 4886, Remote Sensing for Environmental Monitoring. Crete:SPIE, 2003. |