Acta Geodaetica et Cartographica Sinica ›› 2017, Vol. 46 ›› Issue (10): 1460-1469.doi: 10.11947/j.AGCS.2017.20170345
Previous Articles Next Articles
ZHANG Jixian1, LIN Xiangguo2, LIANG Xinlian3
Received:
2017-06-22
Revised:
2017-09-07
Online:
2017-10-20
Published:
2017-10-26
Supported by:
CLC Number:
ZHANG Jixian, LIN Xiangguo, LIANG Xinlian. Advances and Prospects of Information Extraction from Point Clouds[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1460-1469.
[1] 张小红. 机载激光雷达测量技术理论与方法[M]. 武汉:武汉大学出版社, 2007. ZHANG Xiaohong. Theories, Methods of Airborne LiDAR Technique[M]. Wuhan:Wuhan University Press, 2007. [2] ZHANG Zhenxin, ZHANG Liqiang, TONG Xiaohua, et al. Discriminative-dictionary-learning-based Multilevel Point-cluster Features for ALS Point-Cloud Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7309-7322. [3] CHEN Biwu, SHI Shuo, GONG Wei, et al. Multispectral LiDAR Point Cloud Classification:A Two-Step Approach[J]. Remote Sensing, 2017, 9(4):373. [4] 张力, 艾海滨, 许彪, 等. 基于多视影像匹配模型的倾斜航空影像自动连接点提取及区域网平差方法[J]. 测绘学报, 2017, 46(5):554-564. DOI:10.11947/j.AGCS.2017.20160571. ZHANG Li, AI Haibin, XU Biao, et al. Automatic Tie-point Extraction Based on Multiple-image Matching and Bundle Adjustment of Large Block of Oblique Aerial Images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5):554-564. DOI:10.11947/j.AGCS.2017.20160571. [5] 朱庆, 陈崇泰, 胡翰, 等. 顾及纹理特征的航空影像自适应密集匹配方法[J]. 测绘学报, 2017, 46(1):62-72. DOI:10.11947/j.AGCS.2017.20150608. ZHU Qing, CHEN Chongtai, HU Han, et al. An Adaptive Dense Matching Method for Airborne Images Using Texture Information[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):62-72. DOI:10.11947/j.AGCS.2017.20150608. [6] MUSIALSKI P, WONKA P, ALIAGA D G, et al. A Survey of Urban Reconstruction[J]. Computer Graphics Forum, 2013, 32(6):146-177. [7] LAFARGE F, MALLET C. Creating Large-Scale City Models from 3D-point Clouds:A Robust Approach with Hybrid Representation[J]. International Journal of Computer Vision, 2012, 99(1):69-85. [8] FRITSCH D, ABDEL-WAHAB M, CEFALU A, et al. Photogrammetric Point Cloud Collection with Multi-camera Systems[M]//IOANNIDES M, FRITSCH D, LEISSNER J, et al. Progress in Cultural Heritage Preservation. Berlin Heidelberg:Springer, 2012:11-20. [9] 冯帅. 影像匹配点云与机载激光点云的比较[J]. 地理空间信息, 2014, 12(6):82-83. FENG Shuai. Comparison of Image Matching Point Clouds with LiDAR Point Clouds[J]. Geospatial Information, 2014, 12(6):82-83. [10] AXELSSON P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B4):110-117. [11] 隋立春, 张熠斌, 张硕, 等. 基于渐进三角网的机载LiDAR点云数据滤波[J]. 武汉大学学报(信息科学版), 2011, 36(10):1159-1163. SUI Lichun, ZHANG Yibin, ZHANG Shuo, et al. Filtering of Airborne LiDAR Point Cloud Data Based on Progressive TIN[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10):1159-1163. [12] 林祥国, 张继贤. 架空输电线路机载激光雷达点云电力线三维重建[J]. 测绘学报, 2016, 45(3):347-353. DOI:10.11947/j.AGCS.2016.20150186. LIN Xiangguo, ZHANG Jixian. 3D Power Line Reconstruction from Airborne LiDAR Point Cloud of Overhead Electric Power Transmission Corridors[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3):347-353. DOI:10.11947/j.AGCS.2016.20150186. [13] XIE Xiaowei, LIU Zhengjun, XU Caijun, et al. A Multiple Sensors Platform Method for Power Line Inspection Based on a Large Unmanned Helicopter[J]. Sensors, 2017, 17(6):1222. [14] ZHOU Guoqing, ZHOU Xiang. Seamless Fusion of LiDAR and Aerial Imagery for Building Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7393-7407. [15] YANG Bisheng, HUANG Ronggang, LI Jianping, et al. Automated Reconstruction of Building LoDs from Airborne LiDAR Point Clouds Using An Improved Morphological Scale Space[J]. Remote Sensing, 2017, 9(1):14. [16] RAU J Y, JHAN J P, HSU Y C. Analysis of Oblique Aerial Images for Land Cover and Point Cloud Classification in An Urban Environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1304-1319. [17] QIN Rongjun. Change Detection on LOD 2 Building Models with Very High Resolution Spaceborne Stereo Imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,96:179-192. [18] LIANG Xinlian, KANKARE V, HYYPPÄ J, et al. Terrestrial Laser Scanning in Forest Inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,115:63-77. [19] WANG Cheng, NIE Sheng, XI Xiaohuan, et al. Estimating the Biomass of Maize with Hyperspectral and LiDAR Data[J]. Remote Sensing, 2017, 9(1):11. [20] 徐景中, 万幼川, 赖祖龙. 机载激光雷达数据中道路中线的多尺度提取方法[J]. 红外与激光工程, 2009, 38(6):1099-1103. XU Jingzhong, WAN Youchuan, LAI Zulong. Multi-Scale Method for Extracting Road Centerlines from LIDAR Datasets[J]. Infrared and Laser Engineering, 2009, 38(6):1099-1103. [21] YAN W Y, SHAKER A, EL-ASHMAWY N. Urban Land Cover Classification Using Airborne Lidar Data:A Review[J]. Remote Sensing of Environment, 2015,158:295-310. [22] ZHANG Jixian, LIN Xiangguo. Advances in Fusion of Optical Imagery and LiDAR Point Cloud Applied to Photogrammetry and Remote Sensing[J]. International Journal of Image and Data Fusion, 2017, 8(1):1-31. [23] NI Huan, LIN Xiangguo, ZHANG Jixian. Classification of ALS Point Cloud with Improved Point Cloud Segmentation and Random Forests[J]. Remote Sensing, 2017, 9(3):288. [24] 黄先锋, 李卉, 王潇, 等. 机载LiDAR数据滤波方法评述[J]. 测绘学报, 2009, 38(5):466-469. HUANG Xianfeng, LI Hui, WANG Xiao, et al. Filter Algorithms of Airborne LiDAR Data:Review and Prospect[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5):466-469. [25] KRAUS K, PFEIFER N. Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53(4):193-203. [26] VOSSELMAN G. Slope Based Filtering of Laser Altimetry Data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B3):935-942. [27] ZHANG Keqi, CHEN S C, WHITMAN D, et al. A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LIDAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4):872-882. [28] LI Yong, YONG Bin, WU Huayi, et al. An Improved Top-Hat Filter with Sloped Brim for Extracting Ground Points from Airborne Lidar Point Clouds[J]. Remote Sensing, 2014, 6(12):12885-12908. [29] ZHANG Wuming, QI Jianbo, WAN Peng, et al. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation[J]. Remote Sensing, 2016, 8(6):501. [30] KIM H B, SOHN G. Point-based Classification of Power Line Corridor Scene Using Random Forests[J]. Photogrammetric Engineering & Remote Sensing, 2013, 79(9):821-833. [31] 郭波, 黄先锋, 张帆, 等. 顾及空间上下文关系的Joint Boost点云分类及特征降维[J]. 测绘学报, 2013, 42(5):715-721. GUO Bo, HUANG Xianfeng, ZHANG Fan, et al. Points Cloud Classification Using Joint Boost Combined with Contextual Information for Feature Reduction[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5):715-721. [32] LEE I, SCHENK T. Perceptual Organization of 3D Surface Points[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002, 34(3A):193-198. [33] FILIN S, PFEIFER N. Neighborhood Systems for Airborne Laser Data[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(6):743-755. [34] LINSEN L, PRAUTZSCH H. Local Versus Global Triangulations[M]//ROBERTS J C. Eurographics 2001. Oxford, UK:Eurographics Association, 2001:1. [35] DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality Based Scale Selection in 3D Lidar Point Clouds[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, 38(5-W12):97-102. [36] WEINMANN M, JUTZI B, MALLET C. Semantic 3D Scene Interpretation:A Framework Combining Optimal Neighborhood Size Selection with Relevant Features[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, 2(3):181-188. [37] YANG Bisheng, DONG Zhen. A Shape-based Segmentation Method for Mobile Laser Scanning Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,81:19-30. [38] WANG Yu, CHENG Liang, CHEN Yanming, et al. Building Point Detection from Vehicle-Borne Lidar Data Based on Voxel Group and Horizontal Hollow Analysis[J]. Remote Sensing, 2016, 8(5):419. [39] 刘如飞, 卢秀山, 岳国伟, 等. 一种车载激光点云数据中道路自动提取方法[J]. 武汉大学学报(信息科学版), 2017, 42(2):250-256. LIU Rufei, LU Xiushan, YUE Guowei, et al. An Automatic Extraction Method of Road from Vehicle-borne Laser Scanning Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):250-256. [40] SHAN Jie, SAMPATH A. Urban DEM Generation from Raw Lidar Data:A Labeling Algorithm and Its Performance[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(2):217-226. [41] HU Xiangyun, LI Xiaokai, ZHANG Yongjun. Fast Filtering of LiDAR Point Cloud in Urban Areas Based on Scan Line Segmentation and GPU Acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2):308-312. [42] SITHOLE G, VOSSELMAN G. Automatic Structure Detection in a Point-cloud of an Urban Landscape[C]//Proceedings of the 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas. Berlin, Germany:IEEE, 2003:67-71. [43] 唐菲菲, 刘经南, 张小红, 等. 基于体素的森林地区机载LiDAR数据DTM提取[J]. 北京林业大学学报, 2009, 31(1):55-59. TANG Feifei, LIU Jingnan, ZHANG Xiaohong, et al. A Voxel-based Filtering Algorithm for DTM Data Extraction in Forest Areas[J]. Journal of Beijing Forestry University, 2009, 31(1):55-59. [44] WANG Liying, XU Yan, LI Yu. Aerial Lidar Point Cloud Voxelization with Its 3D Ground Filtering Application[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(2):95-107. [45] WU Bin, YU Bailiang, YUE Wenhui, et al. A Voxel-based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data[J]. Remote Sensing, 2013, 5(2):584-611. [46] WANG Yu, CHENG Liang, CHEN Yanming, et al. Building Point Detection from Vehicle-borne LiDAR Data Based on Voxel Group and Horizontal Hollow Analysis[J]. Remote Sensing, 2016, 8(5):419. [47] CHENG Liang, TONG Lihua, WANG Yu, et al. Extraction of Urban Power Lines from Vehicle-Borne LiDAR Data[J]. Remote Sensing, 2014, 6(4):3302-3320. [48] FILIN S, PFEIFER N. Segmentation of Airborne Laser Scanning Data Using A Slope Adaptive Neighborhood[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2):71-80. [49] RUTZINGER M, HFLE B, HOLLAUS M, et al. Object-based Point Cloud Analysis of Full-waveform Airborne Laser Scanning Data for Urban Vegetation Classification[J]. Sensors, 2008, 8(8):4505-4528. [50] LOHMANN P. Segmentation and Filtering of Laser Scanner Digital Surface Models[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002,34:311-315. [51] LEE I. A Feature Based Approach to Automatic Extraction of Ground Points for DTM Generation from LiDAR Data[C]//Proceedings of the ASPRS Annual Conference. Denver, CO, 2004. [52] SITHOLE G, VOSSELMAN G. Filtering of Airborne Laser Scanner Data Based on Segmented Point Clouds[C]//ISPRS WG Ⅲ/3, Ⅲ/4, V/3 Workshop "Laser Scanning 2005". Enschede, the Netherlands:ISPRS, 2005:66-71. [53] TÓVÁRI D, PFEIFER N. Segmentation Based Robust Interpolation-A New Approach to Laser Data Filtering[C]//ISPRS WG Ⅲ/3, Ⅲ/4, V/3 Workshop "Laser Scanning 2005". Enschede, Netherland:ISPRS, 2005:79-84. [54] YAN Menglong, BLASCHKE T, LIU Yu, et al. An Object-based Analysis Filtering Algorithm for Airborne Laser Scanning[J]. International Journal of Remote Sensing, 2012, 33(22):7099-7116. [55] LIN Xiangguo, ZHANG Jixian. Segmentation-based Filtering of Airborne LiDAR Point Clouds by Progressive Densification of Terrain Segments[J]. Remote Sensing, 2014, 6(2):1294-1326. [56] SITHOLE G. Segmentation and Classification of Airborne Laser Scanner Data[D]. Delft:Netherlands Commission of Geodesy, 2005. [57] ZHANG Jixian, LIN Xiangguo, NING Xiaogang. SVM-based Classification of Segmented Airborne LiDAR Point Clouds in Urban Areas[J]. Remote Sensing, 2013, 5(8):3749-3775. [58] YAO Wei, STILLA U. Comparison of Two Methods for Vehicle Extraction from Airborne LiDAR Data Toward Motion Analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):607-611. [59] ZHANG Jixian, DUAN Minyan, YAN Qin, et al. Automatic Vehicle Extraction from Airborne LiDAR Data Using an Object-based Point Cloud Analysis Method[J]. Remote Sensing, 2014, 6(9):8405-8423. [60] EUM J, BAE M, JEON J, et al. Vehicle Detection from Airborne LiDAR Point Clouds Based on A Decision Tree Algorithm with Horizontal and Vertical Features[J]. Remote Sensing Letters, 2017, 8(5):409-418. [61] DARMAWATI A T. Utilization of Multiple Echo Information for Classification of Airborne Laser Scanning Data[D]. Enschede, the Netherlands:International Institute for Geo-Information Science and Earth Observation, 2008. [62] CHEN Yunhao, SU Wei, LI Jing, et al. Hierarchical Object Oriented Classification Using Very High Resolution Imagery and LIDAR Data over Urban Areas[J]. Advances in Space Research, 2009, 43(7):1101-1110. [63] O'NEIL-DUNNE J P M, MACFADEN S W, ROYAR A R, et al. An Object-based System for LiDAR Data Fusion and Feature Extraction[J]. Geocarto International, 2013, 28(3):227-242. [64] 林祥国, 张继贤, 宁晓刚, 等. 融合点、对象、关键点等3种基元的点云滤波方法[J]. 测绘学报, 2016, 45(11):1308-1317. DOI:D10.11947/j.AGCS.2016.20160372. LIN Xiangguo, ZHANG Jixian, NING Xiaogang, et al. Filtering of Point Clouds Using Fusion of Three Types of Primitives Including Points, Objects, and Key Points[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1308-1317. DOI:DOI:10.11947/j.AGCS.2016.20160372. [65] YANG Bisheng, HUANG Ronggang, DONG Zhen, et al. Two-step Adaptive Extraction Method for Ground Points and Breaklines from Lidar Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016(119):373-389. [66] AIJAZI A K, CHECCHIN P, TRASSOUDAINE L. Segmentation Based Classification of 3D Urban Point Clouds:A Super-voxel Based Approach with Evaluation[J]. Remote Sensing, 2013, 5(4):1624-1650. [67] XU S, VOSSELMAN G, ELBERINK S O. Multiple-entity Based Classification of Airborne Laser Scanning Data in Urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,88:1-15. [68] ZHANG Zhenxin, ZHANG Liqiang, TONG Xiaohua, et al. A Multilevel Point-cluster-based Discriminative Feature for ALS Point Cloud Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3309-3321. [69] FARABET C, COUPRIE C, NAJMAN L, et al. Learning Hierarchical Features for Scene Labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1915-1929. [70] HU Han, DING Yulin, ZHU Qing, et al. An Adaptive Surface Filter for Airborne Laser Scanning Point Clouds by Means of Regularization and Bending Energy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,92:98-111. [71] ZHANG Qian, QIN Rongjun, HUANG Xin, et al. Classification of Ultra-high Resolution Orthophotos Combined with DSM Using A Dual Morphological Top Hat Profile[J]. Remote Sensing, 2015, 7(12):16422-16440. [72] YANG Bisheng, DONG Zhen, ZHAO Gang, et al. Hierarchical Extraction of Urban Objects from Mobile Laser Scanning Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,99:45-57. [73] GUAN Haiyan, JI Zheng, ZHONG Liang, et al. Partially Supervised Hierarchical Classification for Urban Features from LiDAR Data with Aerial Imagery[J]. International Journal of Remote Sensing, 2013, 34(1):190-210. [74] GUAN Haiyan, LI J, CHAPMAN M, et al. Integration of Orthoimagery and LiDAR Data for Object-based Urban Thematic Mapping Using Random Forests[J]. International Journal of Remote Sensing, 2013, 34(14):5166-5186. [75] LODHA S K, FITZPATRICK D M, HELMBOLD D P. Aerial Lidar Data Classification using Expectation-Maximization[C]//Proceedings of the SPIE Volume 6499, Vision Geometry XV. San Jose, CA:SPIE, 2007(6499):64990. [76] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Contextual Classification of Lidar Data and Building Object Detection in Urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(87):152-165. [77] LIU Chun, SHI Beiqi, YANG Xuan, et al. Automatic Buildings Extraction From LiDAR Data in Urban Area by Neural Oscillator Network of Visual Cortex[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4):2008-2019. [78] YU Yongtao, LI J, WEN Chenglu, et al. Bag-of-visual-phrases and Hierarchical Deep Models for Traffic Sign Detection and Recognition in Mobile Laser Scanning Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016(113):106-123. [79] GONG Jun, ZHU Qing, ZHONG Ruofei, et al. An Efficient Point Cloud Management Method Based on a 3D R-tree[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(4):373-381. [80] 史文中. 空间数据与空间分析不确定性原理[M]. 北京:科学出版社, 2005. SHI Wenzhong. Principle of Modelling Uncertainties in Spatial Data and Analysis[M]. Beijing:Science Press, 2005. [81] WU Huayi, GUAN Xuefeng, GONG Jianya. ParaStream:A Parallel Streaming Delaunay Triangulation Algorithm for LiDAR Points on Multicore Architectures[J]. Computers & Geosciences, 2011, 37(9):1355-1363. [82] 亢晓琛, 刘纪平, 林祥国. 多核处理器的机载激光雷达点云并行三角网渐进加密滤波方法[J]. 测绘学报, 2013, 42(3):331-336. KANG Xiaochen, LIU Jiping, LIN Xiangguo. Parallel Filter of Progressive TIN Densification for Airborne LiDAR Point Cloud Using Multi-core CPU[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):331-336. [83] 王宗跃, 马洪超, 徐宏根, 等. LiDAR点云数据的分布式组织及其并行获取方法[J]. 武汉大学学报(信息科学版), 2009, 34(8):936-939. WANG Zongyue, MA Hongchao, XU Honggen, et al. An Approach for Distributed Organization and Paralleled Access of LiDAR Point Clouds Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8):936-939. [84] LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553):436-444. [85] SUN X, SHEN S, LIN X, et al. Semantic Labeling of High Resolution Aerial Images Using an Ensemble of Fully Convolutional Networks[J]. Journal of Applied Remote Sensing, 2017. (in Press) [86] GUAN Haiyan, YU Yongtao, JI Zheng, et al. Deep Learning-based Tree Classification Using Mobile LiDAR Data[J]. Remote Sensing Letters, 2015, 6(11):864-873. [87] 范士俊, 张爱武, 胡少兴, 等. 基于随机森林的机载激光全波形点云数据分类方法[J]. 中国激光, 2013, 40(9):0914001. FAN Shijun, ZHANG Aiwu, HU Shaoxing, et al. A Method of Classification for Airborne Full Waveform LiDAR Data Based on Random Forest[J]. Chinese Journal of Lasers, 2013, 40(9):0914001. [88] DU Bo, ZHANG Liangpei, TAO Dacheng, et al. Unsupervised Transfer Learning for Target Detection from Hyperspectral Images[J]. Neurocomputing, 2013(120):72-82. [89] 吴田军, 骆剑承, 夏列钢, 等. 迁移学习支持下的遥感影像对象级分类样本自动选择方法[J]. 测绘学报, 2014, 43(9):908-916. DOI:10.13485/j.cnki.11-2089.2014.0163. WU Tianjun, LUO Jiancheng, XIA Liegang, et al. An Automatic Sample Collection Method for Object-oriented Classification of Remotely Sensed Imageries Based on Transfer Learning[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):908-916. DOI:10.13485/j.cnki.11-2089.2014.0163. |
[1] | YANG Bisheng, CHEN Chi, DONG Zhen. 3D geospatial information extraction of urban objects for smart surveying and mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1476-1484. |
[2] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[3] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[4] | LI Fan, JIN Shaohua, BIAN Gang, CUI Yang, TANG Yulin, ZHANG Yonghou. Construction and verification of improved error model of MBES [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 762-771. |
[5] | LI Bofeng, QIN Yuanyang, CHEN Guang'e. BDS-3 cycle slip and data gap repair based on the geometry-free ionosphere-filter model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 501-510. |
[6] | LI Jingwen, WEI Jingshan, JIANG Jianwu, LU Yanling, LIU Lei, TANG Yifei, LI Xu. Spatio-temporal information extraction method for dynamic targets in multi-perspective surveillance video [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 388-400. |
[7] | FANG Lina, WANG Shuang, ZHAO Zhiyuan, FU Huasheng, CHEN Chongcheng. Automatic classification and vectorization of road markings from mobile laser point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1251-1265. |
[8] | LI Pei, JIANG Gang, MA Qianli, XUE Wanfeng, YANG Weihua. A hybrid model combining tensor and mutual information for multi-modal image registration [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 916-929. |
[9] | YANG Qiulian, LIU Yanfei, DING Lele, MENG Fanxiao. High spatial resolution imagery scene classification based on semi-supervised CNNs [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 930-938. |
[10] | JI Xue, TANG Qiuhua, CHEN Yilan, LI Jie, DING Deqiu. Multibeam acoustic seabed classification combining SVM and adaptive boosting algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 972-981. |
[11] | WANG Si, WANG Guangxia, TIAN Jiangpeng. Classification model of ubiquitous map information facing location-based aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 789-799. |
[12] | GONG Danchao, HAN Yilong, HUANG Xu. Global refinement of building boundary with line feature constraints for stereo dense image matching [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 833-846. |
[13] | ZHAO Chuan, GUO Haitao, LU Jun, YU Donghang, LIN Yuzhun, JIANG Huaigang. Roof segmentation from airborne LiDAR by combining region growing with random sample consensus [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 621-633. |
[14] | SHI Huihui, XU Yannan, TENG Wenxiu, WANG Ni. Scene classification of high-resolution remote sensing imagery based on deep transfer deformable convolutional neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 652-663. |
[15] | ZHANG Hong, WU Zhiwei, WANG Jicheng, GAO Peichao. Unsupervised band selection for hyperspectral image classification using the Wasserstein metric-based configuration entropy [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 405-415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||