Acta Geodaetica et Cartographica Sinica ›› 2019, Vol. 48 ›› Issue (7): 849-861.doi: 10.11947/j.AGCS.2019.20180269
• Geodesy and Navigation • Previous Articles Next Articles
DONG Jinglong1,2, JIANG Liming1,2, JIANG Houjun1,3, SHEN Qiang1,2, LI Dewei1,2, WANG Hansheng1,2, MAO Song1,2
Received:2018-06-15
Revised:2019-03-28
Online:2019-07-20
Published:2019-07-26
Supported by:CLC Number:
DONG Jinglong, JIANG Liming, JIANG Houjun, SHEN Qiang, LI Dewei, WANG Hansheng, MAO Song. Spatio-temporal baseline analysis of lunar-based repeat-track SAR interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 849-861.
| [1] 许才军, 申文斌, 晁定波. 地球物理大地测量学原理与方法[M]. 武汉:武汉大学出版社, 2006. XU Caijun, SHEN Wenbin, CHAO Dingbo. Geophysical geodesy principles and methods[M]. Wuhan:Wuhan University Press, 2006. [2] 张红, 王超, 吴涛, 等. 基于相干目标的DInSAR方法研究[M]. 北京:科学出版社, 2009. ZHANG Hong, WANG Chao, WU Tao, et al. D-InSAR method based on coherent target[M]. Beijing:Science Press, 2009. [3] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. [4] RAMSEY M. ESS findings:lunar science planning and workshop overview[C]//Proceedings of NASA Advisory Council Workshop on Science Associated with the Lunar Exploration Architecture. Arizona:NASA, 2007. [5] SARABANDI K. Lunar-based large baseline synthetic aperture radar interferometry of earth[C]//Proceedings of NASA Advisory Council Workshop on Science Associated with the Lunar Exploration Architecture. Arizona:NASA, 2007. [6] 郭华东, 丁翼星, 刘广, 等. 面向全球变化探测的月基成像雷达概念研究[J]. 中国科学:地球科学, 2013, 43(11):1760-1769. GUO Huadong, DING Yixing, LIU Guang, et al. Conceptual study of lunar-based SAR for global change monitoring[J]. Science China Earth Sciences, 2013, 43(11):1760-1769. [7] 丁翼星, 郭华东, 刘广. 面向全球变化探测的月基对地观测覆盖性能分析[J]. 湖南大学学报(自然科学版), 2014, 41(10):96-102. DING Yixing, GUO Huadong, LIU Guang. Coverage performance analysis of earth observation from lunar base for global change detection[J]. Journal of Hunan University (Natural Sciences), 2014, 41(10):96-102. [8] DING Yixing, GUO Huadong, LIU Guang. Potential applications of the moon based synthetic aperture radar for earth observation[C]//Proceeding of 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne, Australia:IEEE, 2013:1767-1769. [9] FORNARO G, FRANCESCHETTI G, LOMBARDINI F, et al. Potentials and limitations of Moon-borne SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7):3009-3019. [10] MOCCIA A, RENGA A. Synthetic aperture radar for Earth observation from a lunar base:Performance and potential applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1034-1051. [11] 谷昕炜, 陈杰, 杨威, 等. 月基SAR仿真成像研究[J]. 无线电工程, 2018, 48(2):88-91. GU Xinwei, CHEN Jie, YANG Wei, et al. Research on echo simulation and imaging of lunar-based SAR[J]. Radio Engineering, 2018, 48(2):88-91. [12] XU Zhen, CHEN Kunshan. On signal modeling of moon-based synthetic aperture radar (SAR) imaging of earth[J]. Remote Sensing, 2018, 10(3):486. [13] RENGA A, MOCCIA A. Preliminary analysis of a Moon-based interferometric SAR system for very high resolution Earth remote sensing[C]//Proceedings of the 9th ILEWG International Conference on Exploration and Utilization of the Moon. Sorrento, Italy:Lunar Explorers Society, 2007:22-26. [14] DING Y X, GUO H D, LIU G, et al. The analysis of moonborne cross track synthetic aperture radar interferometry for global environment change monitoring[J]. IOP Conference Series:Earth and Environmental Science. IOP Publishing, 2014, 17(1):012278. [15] 丁翼星. 月基对地观测合成孔径雷达与全球变化应用研究[D]. 北京:中国科学院大学, 2014. DING Yixing. Moonborne earth observation synthetic aperture radar and its application in global change[D]. Beijing:Institute of Electronics, CAS, 2014. [16] WILLIAMS J G, BOGGS D H. DE421 lunar orbit, physical librations, and surface coordinates[C]//Proceedings of the 16th International Workshop on Laser Ranging. Poznań:Jet Propulsion Laboratory, 2008. [17] YE Hanlin, GUO Huadong, LIU Guang, et al. Observation scope and spatial coverage analysis for earth observation from a Moon-based platform[J]. International Journal of Remote Sensing, 2017, 39(18):5809-5833. [18] YE Hanlin, GUO Huadong, LIU Guang, et al. Observation duration analysis for Earth surface features from a Moon-based platform[J]. Advances in Space Research, 2018, 62(2):274-287. [19] 丁翼星, 郭华东, 刘广. 基于JPL星历的月基SAR多普勒参数估算方法[J]. 北京航空航天大学学报, 2015, 41(1):71-76. DING Yixing, GUO Huadong, LIU Guang. Method to estimate the Doppler parameters of Moon-borne SAR using JPL ephemeris[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1):71-76. [20] FOLKNER W M, WILLIAMS J G, BOGGS D H, et al. The planetary and lunar ephemerides DE430 and DE431[C]//Proceedings of the Interplanetary Network Progress Report 42-196.[S.l.]:IPN, 2014:1-81. [21] 金文敬. 太阳系行星和月球历表的发展[J]. 天文学进展, 2015, 33(1):103-121. JIN Wenjing. Development of planetary and lunar ephemeris in the solar system[J]. Progress in Astronomy, 2015, 33(1):103-121. [22] LIESKE J H. Precession matrix based on IAU/1976/system of astronomical constants[J]. Astronomy and Astrophysics, 1979, 73(3):282-284. [23] SEIDELMANN P K, ABALAKIN V K, BURSA M, et al. Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites:2000[J]. Celestial Mechanics and Dynamical Astronomy, 2002, 82(1):83-111. [24] GSFC. A standardized lunar coordinate system for the lunar reconnaissance orbiter[R]. LRO Project White Paper.[S.l.]:NASA, 2008. [25] REN Yuanzhen, GUO Huadong, LIU Guang, et al. Simulation study of geometric characteristics and coverage for moon-based earth observation in the electro-optical region[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6):2431-2440. [26] PETIT G, LUZUM B J. IERS conventions (2010)[R]. IERS Technical Note 36. Frankfurt am Main:IERS, 2010. [27] MCCARTHY D D, PETIT G. IERS CONVENTIONS (2003)[R] IERS Technical Note no. 32. Frankfurt am Main:IERS, 2004. [28] ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959. [29] GATELLI F, GUAMIERI A M, PARIZZI F, et al. The wavenumber shift in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):855-865. [30] HANSSEN R F. Radar interferometry:data interpretation and error analysis[M]. Dordrecht:Springer Science & Business Media, 2001. [31] MEYER F J, SANDWELL D T. SAR interferometry at Venus for topography and change detection[J]. Planetary and Space Science, 2012, 73(1):130-144. [32] HU Cheng, LI Yuanhao, DONG Xichao, et al. Optimal data acquisition and height retrieval in repeat-track geosynchronous SAR interferometry[J]. Remote Sensing, 2015, 7(10):13367-13389. |
| [1] | Yungang CAO, Peng YANG, Jiangbo GONG, Gao ZHU, Xingyu SHEN. A road extraction method integrating spatial-relation enhancement and heterogeneous feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2219-2232. |
| [2] | Jin ZHANG, Fan FENG, Chenguang DAI, Zhenchao ZHANG, Ying YU, Bing LIU. Small-sample classification of hyperspectral images based on mixed CNN-ViT feature optimization [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2233-2246. |
| [3] | Zhaoyang HOU, Haowen YAN, Liming ZHANG, Rongjuan MA, Ruitao QU. Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2247-2261. |
| [4] | Qiang XIONG. Multi-modal remote sensing image matching based on spatial structure features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2288-2288. |
| [5] | Yuning FENG. Multi-level climate regionalization of Qinghai-Xizang Plateau [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2293-2293. |
| [6] | Xiaohua TONG, Rong HUANG, Jiarui CAO, Chen LIU, Rong WANG, Yusheng XU, Zhen YE, Yanmin JIN, Shijie LIU, Sicong LIU, Yongjiu FENG, Huan XIE. Intelligent methods for 3D terrain reconstruction of the Moon and near-Earth planets: a review of current advances and future perspectives [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1917-1933. |
| [7] | Hao WU, Dongyang HOU, Jun ZHANG, Ping ZHANG, Yuxuan LIU, Lei DU, Lu KANG, Tao CHENG, Jun CHEN. Research on key technologies of remote sensing based natural resources monitoring and supervision platform supported by dynamic service computing [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1992-2008. |
| [8] | Xi GONG, Zhanlong CHEN, Hengqiang ZHENG, Sheng HU, Hongyan ZHANG. Remote sensing image scene classification method integrating spatial and semantic information of transferred features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2009-2025. |
| [9] | Xuefeng YI. Research on tunnel rock mass structural information automatic extraction based on the integration of point cloud and image [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2098-2098. |
| [10] | Kaisen MA. Study on the individual tree segmentation and forest parameters extraction by terrestrial laser scanning [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2100-2100. |
| [11] | Yueling SHI. Monitoring dynamic evolution and analyzing correlation characteristics of alpine glacier and glacial lake based on SAR interferometry and pixel offset tracking [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2103-2103. |
| [12] | Kangning LI. Study on surface urban heat island across global cities: variations, patterns and controls [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2105-2105. |
| [13] | Xin HUANG, Jian YE, Chengbing LIU, Qiuyu ZENG, Wanxin GUO, Zhikai GUO. A Stacking-SHAP ensemble method for landslide susceptibility prediction with high accuracy and interpretability [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1826-1840. |
| [14] | Xin XIONG, Guowang JIN, Ruibing CUI, Shuo LI, He YANG. Fast matching method of optical and SAR images using rank self-similarity features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1852-1862. |
| [15] | Zhili ZHANG, Huiwei JIANG, Xiangyun HU. A minimal-interaction framework for accurate and batch extraction of geospatial objects from remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1863-1876. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||