[1] 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS.2017.20170276. ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS.2017.20170276. [2] CARRON M J, VOGT P R, JUNG W Y. A proposed international long-term project to systematically map the world's ocean floors from beach to trench:GOMaP (Global Ocean Mapping Program)[J]. Inter. Hydr. Rev., 2001, 2:49-50. [3] SANDWELL D T, SMITH W H F. Bathymetric estimation[M]//FU L L, CAZENAVE A. Satellite Altimetry and Earth Science. San Diego, CA:Academic Press, 2001:441-457. [4] BECKER J J, SANDWELL D T, SMITH W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution:SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4):355-371. [5] DIXON T H, NARAGHI M, MCNUTT M K, et al. Bathymetric prediction from SEASAT altimeter data[J]. Journal of Geophysical Research:Oceans, 1983, 88(C3):1563-1571. [6] SMITH W H F, SANDWELL D T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B11):21803-21824. [7] SMITH W H F, SANDWELL D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334):1956-1962. [8] 王勇, 许厚泽, 詹金刚. 中国海及其邻近海域高分辨率海底地形[J]. 科学通报, 2001, 46(11):956-960. WANG Yong, XU Houze, ZHAN Jingang. High resolution bathymetry for China Sea and adjacent waters[J]. Chinese Science Bulletin, 2001, 46(11):956-960. [9] 黄谟涛, 翟国君, 欧阳永忠, 等. 利用卫星测高资料反演海底地形研究[J]. 武汉大学学报(信息科学版), 2002, 27(2):133-137. HUANG Motao, ZHAI Guojun, OUYANG Yongzhong, et al. The recovery of bathymetry from altimeter data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2):133-137. [10] 罗佳, 李建成, 姜卫平. 利用卫星资料研究中国南海海底地形[J]. 武汉大学学报(信息科学版), 2002, 27(3):256-260. LUO Jia, LI Jiancheng, JIANG Weiping. Bathymetry prediction of South China Sea from satellite data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3):256-260. [11] 方剑, 张赤军. 中国海及邻近海域2'×2'海底地形[J]. 武汉大学学报(信息科学版), 2003, 28(S3):38-40. FANG Jian, ZHANG Chijun. 2'×2' sea floor bathymetry prediction of China Sea and its vicinity[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S3):38-40. [12] 吴云孙, 晁定波, 李建成, 等. 利用测高重力梯度异常反演中国南海海底地形[J]. 武汉大学学报(信息科学版), 2009, 34(12):1423-1425. WU Yunsun, CHAO Dingbo, LI Jiancheng, et al. Recovery of ocean depth model of South China Sea from altimetric gravity gradient anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12):1423-1425. [13] 胡敏章. 海底地形反演与地壳均衡研究[D]. 武汉:武汉大学, 2013. HU Minzhang. Research on bathymetry prediction and crust isostasy[D]. Wuhan:Wuhan University, 2013. [14] 欧阳明达, 孙中苗, 翟振和, 等. 采用重力异常的导纳理论推估海底地形[J]. 测绘学报, 2015, 44(10):1092-1099. DOI:10.11947/j.AGCS2.0152.0140427. OUYANG Mingda, SUN Zhongmiao, ZHAI Zhenhe, et al. Bathymetry prediction based on the admittance theory of gravity anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1092-1099. DOI:10.11947/j.AGCS2.0152.0140427. [15] 范雕, 李姗姗, 孟书宇, 等. 联合多源重力数据反演菲律宾海域海底地形[J]. 测绘学报, 2018, 47(10):1307-1315. DOI:10.11947/j.AGCS.2018.20170423. FAN Diao, LI Shanshan, MENG Shuyu, et al. Recovery of bathymetry over Philippine Sea by combination of multi-source gravity data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10):1307-1315. DOI:10.11947/j.AGCS.2018.20170423. [16] CALMANT S. Seamount topography by least-squares inversion of altimetric geoid heights and shipborne profiles of bathymetry and/or gravity anomalies[J]. Geophysical Journal International, 1994, 119(2):428-452. [17] RAMILLIEN G, WRIGHT C I. Predicted seafloor topography of the New Zealand region:a nonlinear least squares inversion of satellite altimetry data[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B7):16577-16590. [18] CALMANT S BERGE-NGUYEN M, CAZENAVE A. Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings[J]. Geophysical Journal International, 2002, 151(3):795-808. [19] TSCHERNING C C, KNUDSEN P, FORSBERG R. First experiments with improvement of depth information using gravity anomalies in the mediterranean sea[M]//ARABELOS D, TZIAVOS I N. Mare Nostrum. Thessaloniki:University of Thessaloniki, 1994:133-148. [20] HWANG C. A bathymetric model for the South China Sea from satellite altimetry and depth data[J]. Marine Geodesy, 1999, 22(1):37-51. [21] 胡敏章, 李建成, 邢乐林, 等. 海底地形反演方法比较[J]. 大地测量与地球动力学, 2014, 34(5):11-16. HU Minzhang, LI Jiancheng, XING Lelin, et al. Comparative analysis of methods for bathymetry prediction[J]. Journal of Geodesy and Geodynamics, 2014, 34(5):11-16. [22] 金涛勇, 李建成, 姜卫平, 等. 基于多源卫星测高数据的新一代全球平均海面高模型[J]. 测绘学报, 2011, 40(6):723-729. JIN Taoyong, LI Jiancheng, JIANG Weiping, et al. The new generation of global mean sea surface height model based on multi-altimetric data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6):723-729. [23] 李大炜. 多源卫星测高数据确定海洋潮汐模型的研究[D]. 武汉:武汉大学, 2013. LI Dawei. Research on ocean tides modeling using satellite altimetry[D]. Wuhan:Wuhan University, 2013. [24] 胡敏章, 李建成, 邢乐林. 由垂直重力梯度异常反演全球海底地形模型[J]. 测绘学报, 2014, 43(6):558-565, 574. DOI:10.13485/jc.nki1.1-20892.0140.090. HU Minzhang, LI Jiancheng, XING Lelin. Global bathymetry model predicted from vertical gravity gradient anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):558-565, 574. DOI:10.13485/jc.nki1.1-20892.0140.090. [25] 张胜军. 利用多源卫星测高资料确定海洋重力异常的研究[J]. 测绘学报, 2017, 46(8):1071. DOI:10.11947/j.AGCS.2017.20170187. ZHANG Shengjun. Research on determination of marine gravity anomalies from multi-satellite altimeter data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):1071. DOI:10.11947/j.AGCS.2017.20170187. [26] ZHANG Shengjun, SANDWELL D T. Retracking of SARAL/AltiKa radar altimetry waveforms for optimal gravity field recovery[J]. Marine Geodesy, 2017, 40(1):40-56. [27] ZHANG Shengjun, LI Jiancheng, JIN Taoyong, et al. HY-2A altimeter data initial assessment and corresponding two-pass waveform retracker[J]. Remote Sensing, 2018, 10(4):507. [28] AMANTE C, EAKINS B W. ETOPO11 Arc-minute global relief model:procedures, data sources and analysis[R]. Colorado_National Oceanic and Atmospheric Administration, 2009. [29] ANDERSEN O B, KNUDSEN P. The DNSC08BAT bathymetry developed from satellite altimetry[R]. Presented EGU-2008, Vienna, Austria:EGU, 2008. [30] GOODWILLIE A. User guide to the GEBCO one minute grid[R]. Monaco:International Hydrographic Organization, 2008. [31] WATTS A B. Isostasy and flexure of the lithosphere[M]. London:Cambridge University Press, 2001. [32] PARKER R L. The rapid calculation of potential anomalies[J]. Geophysical Journal of the Royal Astronomical Society, 1973, 31(4):447-455. [33] WALCOTT R I. Flexural rigidity, thickness, and viscosity of the lithosphere[J]. Journal of Geophysical Research, 1970, 75(20):3941-3954. [34] HU Minzhang, LI Jiancheng, LI Hui, et al. Predicting global seafloor topography using multi-source data[J]. Marine Geodesy, 2015, 38(2):176-189. [35] TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arc seconds:SRTM15+[J]. Earth and Space Science, 2019, 6(10):1847-1864. [36] SMITH W H F. On the accuracy of digital bathymetric data[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B6):9591-9603. [37] SANDWELL D T, SMITH W H F. Global marine gravity from retracked geosat and ERS-1 altimetry:ridge segmentation versus spreading rate[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B1):B01411. [38] SANDWELL D T, MÜLLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 346(6205):65-67. [39] 胡敏章, 李建成, 徐新禹, 等. 全球1°×1°海洋岩石圈有效弹性厚度模型[J]. 武汉大学学报(信息科学版), 2017, 42(5):575-582. HU Minzhang, LI Jiancheng, XU Xinyu, et al. A 1°×1° model for lithospheric effective elastic thickness over global seafloor[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5):575-582. [40] FAN Diao, LI Shanshan, MENG Shuyu, et al. Applying iterative method to solving high-order terms of seafloor topography[J]. Marine Geodesy, 2020, 43(1):63-85. |