Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1485-1519.doi: 10.11947/j.AGCS.2022.20220224
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
LI Zhenhong1,2,3, ZHU Wu1,2,3, YU Chen1,4, ZHANG Qin1,3, ZHNAG Chenglong1,2, LIU Zhenjiang1,2, ZHANG Xuesong1,2, CHEN Bo1,2, DU Jiantao1,2, SONG Chuang1,4, HAN Bingquan1,2, ZHOU Jiawei1,2
Received:
2022-03-30
Revised:
2022-07-01
Published:
2022-08-13
Supported by:
CLC Number:
LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519.
[1] ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B5):4993-4999. [2] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191. [3] GOLDSTEIN R M, ENGELHARDT H, KAMB B, et al. Satellite radar interferometry for monitoring ice sheet motion:application to an antarctic ice stream[J]. Science, 1993, 262(5139):1525-1530. [4] ROGERS A E, INGALLS R P. Venus:mapping the surface reflectivity by radar interferometry[J]. Science, 1969, 165(3895):797-799. [5] GRAHAM L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6):763-768. [6] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142. [7] MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J]. Nature, 1995, 375(6532):567-570. [8] ACHACHE J, FRUNEAU B, DELACOURT C. Applicability of SAR interferometry for operational monitoring of landslides[C]//Proceeding of the 2nd ERS Applications Workshop. London, UK:ESA, 1996. [9] CARNEC C, DELACOURT C. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France[J]. Journal of Applied Geophysics, 2000, 43(1):43-54. [10] SANDWELL D T, PRICE E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30183-30204. [11] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[C]//Proceedings of 1999 International Geoscience and Remote Sensing Symposium. Hamburg, Germany:IEEE, 1999:1528-1530. [12] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [13] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2002, 40(11):2375-2383. [14] BECHOR N B D, ZEBKER H A. Measuring two-dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16):L16311. [15] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [16] LI Zhenhong, YU Chen, XIAO Ruya,et al. Entering a new era of InSAR:advanced techniques and emerging applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):1-4. DOI:10.11947/j.JGGS.2022.0101. [17] 王超.利用航天飞机成象雷达干涉数据提取数字高程模型[J].遥感学报, 1997, 1(1):46-49. WANG Chao. Using SIR-C interferometric data for DEM acquisition[J]. Journal of Remote Sensing, 1997, 1(1):46-49. [18] 张景发,邵芸.干涉成像雷达(INSAR)技术及其应用现状[J].地震地质, 1998, 20(3):277-288. ZHANG Jingfa, SHAO Yun. SAR interferometry and its application review[J]. Seismology and Geology, 1998, 20(3):277-288. [19] 游新兆,李澍荪,杨少敏,等.长江三峡工程库首区InSAR测量的初步研究[J].地壳形变与地震, 2001, 21(4):58-66. YOU Xinzhao, LI Shusun, YANG Shaomin, et al. InSAR investigation in the early stage of the Three Gorges project on the Yangtze River[J]. Crustal Deformation and Earthquake, 2001, 21(4):58-66. [20] CHENG Xiao, XU Guanhua. The integration of JERS-1 and ERS SAR in differential interferometry for measurement of complex glacier motion[J]. Journal of Glaciology, 2006, 52(176):80-88. [21] 程晓,李小文,邵芸,等.南极格罗夫山地区冰川运动规律DINSAR遥感研究[J].科学通报, 2006, 51(17):2060-2067. CHENG Xiao, LI Xiaowen, SHAO Yun, et al. D-InSAR remote sensing study of glacier movement in the Groff Mountains, Antarctica[J]. Chinese Science Bulletin, 2006, 51(17):2060-2067. [22] 陈国浒,单新建, MOON W M,等.基于InSAR、GPS形变场的长白山地区火山岩浆囊参数模拟研究[J].地球物理学报, 2008, 51(4):1085-1092. CHEN Guohu, SHAN Xinjian, MOON W M, et al. A modeling of the magma chamber beneath the Changbai Mountains volcanic area constrained by InSAR and GPS derived deformation[J]. Chinese Journal of Geophysics, 2008, 51(4):1085-1092. [23] LI Zhenhong. Correction of atmospheric water vapour effects on repeat-pass SAR interferometry using GPS, MODIS and MERIS data[D]. London:University of London, 2005. [24] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3):333-382. [25] ZISK S H. A new, earth-based radar technique for the measurement of lunar topography[J]. The Moon, 1972, 4(3):296-306. [26] XIA Ye. Synthetic aperture radar interferometry[M]. Sciences of Geodesy-I. Springer, 2010:415-74. [27] HANSSEN R F. Radar interferometry:data interpretation and error analysis[M]. Boston, MA:Kluwer Academic, 2001. [28] BVRGMANN R, ROSEN P A, FIELDING E J. Synthetic aperture radar interferometry to measure earth's surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):169-209. [29] ZEBKER H A, ROSEN P A, HENSLEY S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B4):7547-7563. [30] LI Zhenhong, LIU Yanxiong, ZHOU Xinghua, et al. Using small baseline interferometric SAR to map nonlinear ground motion:a case study in Northern Tibet[J]. Journal of Applied Geodesy, 2009, 3(3):163-170. [31] XIAO Ruya, YU Chen, LI Zhenhong, et al. General survey of large-scale land subsidence by GACOS-corrected InSAR stacking:case study in North China plain[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 382:213-218. [32] WRIGHT T, PARSONS B, FIELDING E. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry[J]. Geophysical Research Letters, 2001, 28(10):2117-2120. [33] 张成龙,李振洪,余琛,等.利用GACOS辅助下InSAR Stacking对金沙江流域进行滑坡监测[J].武汉大学学报(信息科学版), 2021, 46(11):1649-1657. ZHANG Chenglong, LI Zhenhong, YU Chen, et al. Landslide detection of the Jinsha River region using GACOS assisted InSAR stacking[J]. Geomatics and Information Science of Wuhan University,2021, 46(11):1649-1657. [34] YU Chen, LI Zhenhong, BAI Lin, et al. Successful applications of generic atmospheric correction online service for InSAR (GACOS) to the reduction of atmospheric effects on InSAR observations[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1):109-115. DOI:10.11947/j.JGGS.2021.0113. [35] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [36] HOOPER A, ZEBKER H, SEGALL P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23):L23611. [37] HOOPER A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302. [38] JIANG Mi, DING Xiaoli, HANSSEN R F, et al. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1213-1224. [39] WANG Guanya, XU Bing, LI Zhiwei, et al. A phase optimization method for DS-InSAR based on SKP decomposition from quad-polarized data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [40] LAUKNES T R, ZEBKER H A, LARSEN Y. InSAR deformation time series using an L1-norm small-baseline approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):536-546. [41] WERNER C L, STROZZI T, WEGMVLLER U. Deformation time-series of the lost hills oil field using a multi-baseline interferometric SAR inversion algorithm with finite-difference smoothing constraints[C]//Proceedings of 2012 American Geophysical Union Fall Meeting. San Francisco, CA:AGU, 2012. [42] SCHMIDT D A, BVRGMANN R. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B9):2416. [43] DOIN M P, LODGE F, GUILLASO S, et al. Presentation of the small baseline NSBAS processing chain on a case example:the Etna deformation monitoring from 2003 to 2010 using Envisat data[C]//Proceedings of 2011 Fringe ESA Conference. Frascati, Italy:[s.n.], 2011. [44] USAI S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4):753-760. [45] GEE D, SOWTER A, NOVELLINO A, et al. Monitoring land motion due to natural gas extraction:validation of the Intermittent SBAS (ISBAS) DInSAR algorithm over gas fields of North Holland, the Netherlands[J]. Marine and Petroleum Geology, 2016, 77:1338-1354. [46] LANARI R, MORA O, MANUNTA M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1377-1386. [47] OJHA C, MANUNTA M, LANARI R, et al. The constrained-network propagation (C-NetP) technique to improve SBAS-DInSAR deformation time series retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4910-4921. [48] SOWTER A, BATESON L, STRANGE P, et al. DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields[J]. Remote Sensing Letters, 2013, 4(10):979-987. [49] CASU F, ELEFANTE S, IMPERATORE P, et al. SBAS-DInSAR parallel processing for deformation time-series computation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8):3285-3296. [50] SAMSONOV S, D'OREYE N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province[J]. Geophysical Journal International, 2012, 191(3):1095-1108. [51] CASU F, MANCONI A, PEPE A, et al. Deformation time-series generation in areas characterized by large displacement dynamics:the SAR amplitude pixel-offset SBAS technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7):2752-2763. [52] LI Zhenhong, FIELDING E J, CROSS P. Integration of InSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 bam (Iran) earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9):3220-3230. [53] YU Chen, LI Zhenhong, PENNA N T. Triggered afterslip on the southern Hikurangi subduction interface following the 2016 Kaikōura earthquake from InSAR time series with atmospheric corrections[J]. Remote Sensing of Environment, 2020, 251:112097. [54] PARK S W, HONG S H. Nonlinear modeling of subsidence from a decade of InSAR time series[J]. Geophysical Research Letters, 2021, 48(3):e2020GL090970. [55] BIGGS J, WRIGHT T, LU Zhong, et al. Multi-interferogram method for measuring interseismic deformation:Denali Fault, Alaska[J]. Geophysical Journal International, 2007, 170(3):1165-1179. [56] ZHAO Chaoying, LU Zhong, ZHANG Qin, et al. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124:348-359. [57] MANCONI A, CASU F. Joint analysis of displacement time series retrieved from SAR phase and amplitude:impact on the estimation of volcanic source parameters[J]. Geophysical Research Letters, 2012, 39(14):L14301. [58] SAMSONOV S. Three-dimensional deformation time series of glacier motion from multiple-aperture DInSAR observation[J]. Journal of Geodesy, 2019, 93(12):2651-2660. [59] BVRGMANN R, HILLEY G, FERRETTI A, et al. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis[J]. Geology, 2006, 34(3):221-224. [60] FUNNING G J, BVRGMANN R, FERRETTI A, et al. Creep on the rodgers creek fault, northern San Francisco bay Area from a 10 year PS-InSAR dataset[J]. Geophysical Research Letters, 2007, 34(19):L19306. [61] HOOPER A, BEKAERT D, SPAANS K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514-517:1-13. [62] LAGIOS E, PAPADIMITRIOU P, NOVALI F, et al. Combined seismicity pattern analysis, DGPS and PSInSAR studies in the broader area of Cephalonia (Greece)[J]. Tectonophysics, 2012, 524-525:43-58. [63] MASSIRONI M, ZAMPIERI D, BIANCHI M, et al. Use of PSInSARTM data to infer active tectonics:clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy)[J]. Tectonophysics, 2009, 476(1-2):297-303. [64] PELTIER A, BIANCHI M, KAMINSKI E, et al. PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation:validation using GPS measurements on Piton de la Fournaise[J]. Geophysical Research Letters, 2010, 37(12):L12301. [65] WERNER C, WEGMULLER U, WIESMANN A, et al. Interferometric point target analysis with JERS-1 L-band SAR data[C]//Proceedings of 2003 IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France:IEEE, 2003. [66] HOOPER A, SEGALL P, ZEBKER H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07407. [67] PERISSIN D, WANG Teng. Repeat-pass SAR interferometry with partially coherent targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):271-280. [68] BLANCO-SÁNCHEZ P, MALLORQUÍ J J, DUQUE S, et al. The coherent pixels technique (CPT):an advanced DInSAR technique for nonlinear deformation monitoring[J]. Pure and Applied Geophysics, 2008, 165(6):1167-1193. [69] CROSETTO M, MONSERRAT O, CUEVAS-GONZÁLEZ M, et al. Persistent scatterer interferometry:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:78-89. [70] 朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J].测绘学报, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. [71] 蒋弥,丁晓利,李志伟.时序InSAR同质样本选取算法研究[J].地球物理学报, 2018, 61(12):4767-4776. JIANG Mi, DING Xiaoli, LI Zhiwei. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776. [72] PARIZZI A, BRCIC R. Adaptive InSAR stack multilooking exploiting amplitude statistics:a comparison between different techniques and practical results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):441-445. [73] GOEL K, ADAM N. An advanced algorithm for deformation estimation in non-urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:100-110. [74] 蒋弥,丁晓利,何秀凤,等.基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J].地球物理学报, 2016, 59(10):3592-3603. JIANG Mi, DING Xiaoli, HE Xiufeng, et al. FaSHPS-InSAR technique for distributed scatterers:a case study over the lost hills oil field, California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603. [75] FORNARO G, VERDE S, REALE D, et al. CAESAR:an approach based on covariance matrix decomposition to improve multibaseline-multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2050-2065. [76] WANG Yuanyuan, ZHU Xiaoxiang. Robust estimators for multipass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):968-980. [77] ANSARI H,DE ZAN F, BAMLER R. Sequential estimator:a novel approach for efficient high-precision analysis of interferometric time series[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA:IEEE, 2017. [78] ANSARI H,DE ZAN F, GOMBA G, et al. EMI:efficient temporal phase estimation and its impact on high-precision InSAR time series analysis[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan:IEEE, 2019. [79] SCHEIBER R, MOREIRA A. Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2179-2191. [80] BEN-DOV N B, HERRING T A. Multiple aperture INSAR (MAI) with C-band and L-band data:noise and precision[R]. Cambridge, MA:Massachusetts Institute of Technology, 2012. [81] JIANG Houjun, FENG Guangcai, WANG Teng, et al. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement:application to the 2016 Kumamoto (Japan) earthquake[J]. Geophysical Research Letters, 2017, 44(4):1758-1767. [82] JO M J, JUNG H S, WON J S. Measurement of precise three-dimensional volcanic deformations via TerraSAR-X synthetic aperture radar interferometry[J]. Remote Sensing of Environment, 2017, 192:228-237. [83] FENG Wanpeng, LI Zhenhong, ELLIOTT J R, et al. The 2011Mw 6.8 Burma earthquake:fault constraints provided by multiple SAR techniques[J]. Geophysical Journal International, 2013, 195(1):650-660. [84] LIU Jihong, HU Jun, LI Zhiwei, et al. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images[J]. Science China Earth Sciences, 2022, 65(4):687-697. [85] LU Zhong, DZURISIN D, BIGGS J, et al. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis:1. Intereruption deformation, 1997-2008[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B5):B00B02. [86] SHI Xuguo, JIANG Houjun, ZHANG Lu, et al. Landslide displacement monitoring with split-bandwidth interferometry:a case study of the shuping landslide in the Three Gorges area[J]. Remote Sensing, 2017, 9(9):937. [87] LUO Haibin, LI Zhenhong, CHEN Jiajun, et al. Integration of range split spectrum interferometry and conventional InSAR to monitor large gradient surface displacements[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74:130-137. [88] CURLANDER J C, MCDONOUGH R N. Synthetic aperture radar:systems and signal processing[M]. New York:Wiley, 1991. [89] JIANG Mi, DING Xiaoli, LI Zhiwei. Hybrid approach for unbiased coherence estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2459-2473. [90] 葛大庆.区域性地面沉降InSAR监测关键技术研究[D].北京:中国地质大学(北京), 2013. GE Daqing. Research on the key techniques of SAR interferometry for regional land subsidence monitoring[D]. Beijing:China University of Geosciences (Beijing), 2013. [91] COLIN E, TITIN-SCHNAIDER C, TABBARA W. An interferometric coherence optimization method in radar polarimetry for high-resolution imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1):167-175. [92] AHMED R, SIQUEIRA P, HENSLEY S, et al. A survey of temporal decorrelation from spaceborne L-band repeat-pass InSAR[J]. Remote Sensing of Environment, 2011, 115(11):2887-2896. [93] SICA F, BRETZKE S, PULELLA A, et al. InSAR decorrelation at X-band from the joint TanDEM-X/PAZ constellation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12):2107-2111. [94] JUNG J, KIM D J, LAVALLE M, et al. Coherent change detection using InSAR temporal decorrelation model:a case study for volcanic ash detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):5765-5775. [95] MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the Earth's surface[J]. Reviews of Geophysics, 1998, 36(4):441-500. [96] JUNG H S, WON J S, KIM S W. An improvement of the performance of multiple-aperture SAR interferometry (MAI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2859-2869. [97] STROZZI T, LUCKMAN A, MURRAY T, et al. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391. [98] LIANG Cunren, AGRAM P, SIMONS M, et al. Ionospheric correction of InSAR time series analysis of C-band Sentinel-1 TOPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6755-6773. [99] HUANG M H, TUNG H, FIELDING E J, et al. Multiple fault slip triggered above the 2016Mw 6.4 MeiNong earthquake in Taiwan[J]. Geophysical Research Letters, 2016, 43(14):7459-7467. [100] GRAY A L, MATTAR K E, SOFKO G. Influence of ionospheric electron density fluctuations on satellite radar interferometry[J]. Geophysical Research Letters, 2000, 27(10):1451-1454. [101] JOUGHIN I, WINEBRENNER D, FAHNESTOCK M, et al. Measurement of ice-sheet topography using satellite-radar interferometry[J]. Journal of Glaciology, 1996, 42(140):10-22. [102] ZHANG Bochen, ZHU Wu, DING Xiaoli, et al. A review of methods for mitigating ionospheric artifacts in differential SAR interferometry[J]. Geodesy and Geodynamics, 2022, 13(2):160-169. [103] HE Yufang, ZHU Wu, LEI Yang, et al. A comparative study of ionospheric correction on SAR interferometry-a case study of L'Aquila earthquake[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):5-13. DOI:10.11947/j.JGGS.2022.0102. [104] ZHU Wu, JUNG H S, CHEN Jingyuan. Synthetic aperture radar interferometry (InSAR) ionospheric correction based on Faraday rotation:two case studies[J]. Applied Sciences, 2019, 9(18):3871. [105] ZHANG Bochen, DING Xiaoli, ZHU Wu, et al. Mitigating ionospheric artifacts in coseismic interferogram based on offset field derived from ALOS-PALSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7):3050-3059. [106] ZHU Wu, LEI Yang, SUN Quan. Detection, estimation and compensation of ionospheric effect on SAR interferogram using azimuth shift[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):14-24. DOI:10.11947/j.JGGS.2022.0103. [107] ZHANG Bochen, WANG Chisheng, DING Xiaoli, et al. Correction of ionospheric artifacts in SAR data:application to fault slip inversion of 2009 southern Sumatra earthquake[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9):1327-1331. [108] FATTAHI H, SIMONS M, AGRAM P. InSAR time-series estimation of the ionospheric phase delay:an extension of the split range-spectrum technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5984-5996. [109] GOMBA G, PARIZZI A, DE ZAN F, et al. Toward operational compensation of ionospheric effects in SAR interferograms:the split-spectrum method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1446-1461. [110] JOLIVET R, AGRAM P S, LIN N Y, et al. Improving InSAR geodesy using global atmospheric models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2324-2341. [111] DOIN M P, LASSERRE C, PELTZER G, et al. Corrections of stratified tropospheric delays in SAR interferometry:validation with global atmospheric models[J]. Journal of Applied Geophysics, 2009, 69(1):35-50. [112] LI Zhenhong, FIELDING E J, CROSS P, et al. Interferometric synthetic aperture radar atmospheric correction:GPS topography-dependent turbulence model[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B2):B02404. [113] EBMEIER S K. Application of independent component analysis to multitemporal InSAR data with volcanic case studies[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(12):8970-8986. [114] BEKAERT D P S, HOOPER A, WRIGHT T J. A spatially variable power law tropospheric correction technique for InSAR data[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(2):1345-1356. [115] ONN F, ZEBKER H A. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B9):B09102. [116] YU Chen, LI Zhenhong, PENNA N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204:109-121. [117] YU Chen, LI Zhenhong, PENNA N T, et al. Generic atmospheric correction model for interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(10):9202-9222. [118] 李振洪,张雪松.一种结合GACOS的星载InSAR大气校正方法:中国, 114415131A[P]. 2022-04-29. LI Zhenhong, ZHANG Xuesong. Reduction of atmospheric effects on InSAR observations through incorporation of GACOS and PCA into small baseline subset InSAR:CN, 114415131A[P]. 2022-04-29. [119] YU Hanwen, LAN Yang, YUAN Zhihui, et al. Phase unwrapping in InSAR:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1):40-58. [120] GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite radar interferometry:two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4):713-720. [121] ZUO Chao, HUANG Lei, ZHANG Minliang, et al. Temporal phase unwrapping algorithms for fringe projection profilometry:a comparative review[J]. Optics and Lasers in Engineering, 2016, 85:84-103. [122] ZHOU Lifan, YU Hanwen, LAN Yang, et al. Artificial intelligence in interferometric synthetic aperture radar phase unwrapping:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(2):10-28. [123] TRIBOLET J. A new phase unwrapping algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, 25(2):170-177. [124] BUCKLAND J R, HUNTLEY J M, TURNER S R E. Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm[J]. Applied Optics, 1995, 34(23):5100-5108. [125] QUIROGA J A, GONZÁLEZ-CANO A, BERNABEU E. Stable-marriages algorithm for preprocessing phase maps with discontinuity sources[J]. Applied Optics, 1995, 34(23):5029-5038. [126] CUSACK R, HUNTLEY J M, GOLDREIN H T. Improved noise-immune phase-unwrapping algorithm[J]. Applied Optics, 1995, 34(5):781-789. [127] GUTMANN B, WEBER H. Phase unwrapping with the branch-cut method:role of phase-field direction[J]. Applied Optics, 2000, 39(26):4802-4816. [128] KAROUT S A, GDEISAT M A, BURTON D R, et al. Residue vector, an approach to branch-cut placement in phase unwrapping:theoretical study[J]. Applied Optics, 2007, 46(21):4712-4727. [129] ZHENG Dongliang, DA Feipeng. A novel algorithm for branch cut phase unwrapping[J]. Optics and Lasers in Engineering, 2011, 49(5):609-617. [130] HOOPER A, ZEBKER H A. Phase unwrapping in three dimensions with application to InSAR time series[J]. Journal of the Optical Society of America A, 2007, 24(9):2737-2747. [131] GHIGLIA D C, ROMERO L A. Minimum Lp-norm two-dimensional phase unwrapping[J]. Journal of the Optical Society of America A, 1996, 13(10):1999-2013. [132] FLYNN T J. Two-dimensional phase unwrapping with minimum weighted discontinuity[J]. Journal of the Optical Society of America A, 1997, 14(10):2692-2701. [133] COSTANTINI M. A novel phase unwrapping method based on network programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):813-821. [134] CHEN C W, ZEBKER H A. Network approaches to two-dimensional phase unwrapping:intractability and two new algorithms[J]. Journal of the Optical Society of America A, 2000, 17(3):401-414. [135] CHEN C W, ZEBKER H A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization[J]. Journal of the Optical Society of America A, 2001, 18(2):338-351. [136] 戴可人,张乐乐,宋闯,等.川藏铁路沿线Sentinel-1影像几何畸变与升降轨适宜性定量分析[J].武汉大学学报(信息科学版), 2021, 46(10):1450-1460. DAI Keren, ZHANG Lele, SONG Chuang, et al. Quantitative analysis of Sentinel-1 imagery geometric distortion and their suitability along Sichuan-Tibet railway[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1450-1460. [137] SUN Qian, HU Jun, ZHANG Lei, et al. Towards slow-moving landslide monitoring by integrating multi-sensor InSAR time series datasets:the Zhouqu case study, China[J]. Remote Sensing, 2016, 8(11):908. [138] KROPATSCH W G, STROBL D. The generation of SAR layover and shadow maps from digital elevation models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1):98-107. [139] ZHANG Peng, CHEN Lifu, LI Zhenhong, et al. Automatic extraction of water and shadow from SAR images based on a multi-resolution dense encoder and decoder network[J]. Sensors, 2019, 19(16):3576. [140] 李振洪,宋闯,余琛,等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版), 2019, 44(7):967-979. LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring:challenges and solutions[J].Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979. [141] GRANDIN R, KLEIN E, MÉTOIS M, et al. Three-dimensional displacement field of the 2015Mw 8.3 Illapel earthquake (Chile) from across-and along-track Sentinel-1 TOPS interferometry[J]. Geophysical Research Letters, 2016, 43(6):2552-2561. [142] LI Xing, JÓNSSON S, CAO Yunmeng. Interseismic deformation from Sentinel-1 burst-overlap interferometry:application to the southern dead sea fault[J]. Geophysical Research Letters, 2021, 48(16):e2021GL093481. [143] LIU Jihong, HU Jun, LI Zhiwei, et al. Three-dimensional surface displacements of the 8 January 2022Mw 6.7 Menyuan earthquake, China from Sentinel-1 and ALOS-2 SAR observations[J]. Remote Sensing, 2022, 14(6):1404. [144] FIALKO Y, SIMONS M, AGNEW D. The complete (3-D) surface displacement field in the epicentral area of the 1999Mw 7.1 Hector Mine Earthquake, California, from space geodetic observations[J]. Geophysical Research Letters, 2001, 28(16):3063-3066. [145] WRIGHTT J, PARSONS B E, LU Zhong. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1):L01607. DOI:10.1029/2003GL018827. [146] SAMSONOV S, D'OREYE N, SMETS B. Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23:142-154. [147] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J].测绘学报, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):135-144. DOI:10.11947/j.AGCS.2019.20180188. [148] LI Zhiwei, YANG Zefa, ZHU Jianjun, et al. Retrieving three-dimensional displacement fields of mining areas from a single InSAR pair[J]. Journal of Geodesy, 2015, 89(1):17-32. [149] HU Jun, LIU Jihong, LI Zhiwei, et al. Estimating three-dimensional coseismic deformations with the SM-VCE method based on heterogeneous SAR observations:selection of homogeneous points and analysis of observation combinations[J]. Remote Sensing of Environment, 2021, 255:112298. [150] 刘计洪,胡俊,李志伟,等. InSAR三维同震地表形变监测-窗口优化的SM-VCE算法[J].测绘学报, 2021, 50(9):1222-1239. DOI:10.11947/j.AGCS.2021.20200610. LIU Jihong, HU Jun, LI Zhiwei, et al. Estimation of 3D coseismic deformation with InSAR:an improved SM-VCE method by window optimization[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1222-1239. DOI:10.11947/j.AGCS.2021.20200610. [151] SCHOLZ C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662):37-42. [152] ELLIOTT J R, WALTERS R J, WRIGHT T J. The role of space-based observation in understanding and responding to active tectonics and earthquakes[J]. Nature Communications, 2016, 7(1):13844. [153] SALVI S, STRAMONDO S, FUNNING G J, et al. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sensing of Environment, 2012, 120:164-174. |
[1] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[2] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[3] | LOU Liangsheng, MIAO Jian, CHEN Junli, LIU Zhiming, ZHANG Xiaowei, ZHANG Hao. Key issues of InSAR system designment based on satellite formation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1372-1385. |
[4] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[5] | LI Zhiwei, XU Wenbin, HU Jun, FENG Guangcai, YANG Zefa, LI Jia, ZHANG Heng, CHEN Qi, ZHU Jianjun, WANG Qijie, ZHAO Rong, DUAN Meng. Partial geoscience parameters inversion from InSAR observation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475. |
[6] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[7] | MA Zhangfeng, JIANG Mi, LI Guihua, HUANG Teng. Effects of spatial network on time series InSAR phase unwrapping: take the Delaunay and Dijkstra networks for example [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 248-257. |
[8] | LIU Jihong, HU Jun, LI Zhiwei, ZHU Jianjun. Estimation of 3D coseismic deformation with InSAR: an improved SM-VCE method by window optimization [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1222-1239. |
[9] | LI Tao, TANG Xinming, GAO Xiaoming, CHEN Qianfu, ZHANG Xiang. Analysis and outlook of the operational topographic surveying and mapping capability of the SAR satellites [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 891-904. |
[10] | SHAO Kai, ZHANG Houzhe, QIN Xianping, HUANG Zhiyong, YI Bin, GU Defeng. Precise absolute and relative orbit determination for distributed InSAR satellite system [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 580-588. |
[11] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, FENG Can. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 600-611. |
[12] | LIU Qinghao, ZHANG Yonghong, DENG Min, WU Hongan, KANG Yonghui, WEI Jujie. Time series prediction method of large-scale surface subsidence based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404. |
[13] | LOU Liangsheng, LIU Zhiming, ZHANG Hao, QIAN Fangming, HUANG Yan. TH-2 satellite engineering design and implementation [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1252-1264. |
[14] | XIE Qinghua, ZHU Jianjun, WANG Changcheng, FU Haiqiang, ZHANG Bing. A S-RVoG model-based PolInSAR nonlinear complex least squares method for forest height inversion [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1303-1310. |
[15] | ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||