Acta Geodaetica et Cartographica Sinica ›› 2023, Vol. 52 ›› Issue (12): 2164-2177.doi: 10.11947/j.AGCS.2023.20220616
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
YANG Yuyan1, ZANG Yufu1, XIAO Xiongwu2, GUAN Haiyan1, PENG Daifeng1
Received:
2022-10-28
Revised:
2023-06-12
Published:
2024-01-03
Supported by:
CLC Number:
YANG Yuyan, ZANG Yufu, XIAO Xiongwu, GUAN Haiyan, PENG Daifeng. An accurate breakline-aware filtering method for airborne laser scanning point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2164-2177.
[1] HU Han, DING Yulin, ZHU Qing, et al. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 98-111. [2] YANG Bisheng, HUANG Ronggang, DONG Zhen, et al. Two-step adaptive extraction method for ground points and breaklines from LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 373-389. [3] 宿殿鹏, 闫豆豆, 陈亮, 等. 机载LiDAR测深点云SVB联合滤波算法[J]. 测绘学报, 2023, 52(4): 614-623. DOI: 10.11947/j.AGCS.2023.20220248. SU Dianpeng, YAN Doudou, CHEN Liang, et al. Surface-volume-bottom joint-filtering algorithm for airborne LiDAR bathymetric point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 614-623. DOI: 10.11947/j.AGCS.2023.20220248. [4] 汪文琪, 李宗春, 付永健, 等. 一种多尺度自适应点云坡度滤波算法[J]. 武汉大学学报(信息科学版), 2022, 47(3): 438-446. WANG Wenqi, LI Zongchun, FU Yongjian, et al. A multi-scale adaptive slope filtering algorithm for point cloud[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 438-446. [5] SUSAKI J. Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation[J]. Remote Sensing, 2012, 4(6): 1804-1819. [6] VOSSELMAN G. Slope based filtering of laser altimetry data[EB/OL].[2022-10-28]. https://www.researchgate.net/publication/228719860_Slope_based_filtering_of_laser_altimetry_data. [7] LI Y, YONG B, VAN OOSTEROM P, et al. Airborne LiDAR data filtering based on geodesic transformations of mathematical morphology[J]. Remote Sensing, 2017, 9(11): 1104. [8] MONGUS D, LUKAČ N, ŽALIK B. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 145-156. [9] HUI Zhenyang, HU Youjian, YEVENYO Y, et al. An improved morphological algorithm for filtering airborne LiDAR point cloud based on multi-level Kriging interpolation[J]. Remote Sensing, 2016, 8(1): 35. [10] ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. Parameter group optimization by combining CUBE with surface filtering and its application[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 81-92. [11] LIN Xiangguo, ZHANG Jixian. Segmentation-based filtering of airborne LiDAR point clouds by progressive densification of terrain segments[J]. Remote Sensing, 2014, 6(2): 1294-1326. [12] AXELSSON P. DEM generation from laser scanner data using adaptive TIN models[EB/OL]. [2022-10-28]. https://www.isprs.org/proceedings/XXXIII/congress/part4/111_XXXIII-part4.pdf?origin=publication_detail. [13] CHEN Qi, WANG Huan, ZHANG Hanchao, et al. A point cloud filtering approach to generating DTMs for steep mountainous areas and adjacent residential areas[J]. Remote Sensing, 2016, 8(1): 71. [14] ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501. [15] YIN Huilin, YANG Xiaohan, HE Chao. Spherical coordinates based methods of ground extraction and objects segmentation using 3D LiDAR sensor[J]. IEEE Intelligent Transportation Systems Magazine, 2016, 8(1): 61-68. [16] 郑辑涛, 张涛. 基于可变半径圆环和B样条拟合的机载LiDAR点云滤波[J]. 测绘学报, 2015, 44(12): 1359-1366. ZHENG Jitao, ZHANG Tao. Filtering of airborne LiDAR point cloud based on variable radius circle and B-spline fitting[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12): 1359-1366. [17] SÁNCHEZ J M,ÁLVAREZ Á V, VILARIÑO D L, et al. Fast ground filtering of airborne LiDAR data based on iterative scan-line spline interpolation[J]. Remote Sensing, 2019, 11(19): 2256. [18] KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331. [19] 贺美芳, 周来水, 神会存. 散乱点云数据的曲率估算及应用[J]. 南京航空航天大学学报, 2005, 37(4): 515-519. HE Meifang, ZHOU Laishui, SHEN Huicun. Curvature estimation of scattered-point cloud data and its application[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(4): 515-519. [20] ROUL P, PRASAD GOURA V M K. B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems[J]. Applied Mathematics and Computation, 2019, 341: 428-450. [21] ABDI H, WILLIAMS L J. Principal component analysis[J]. WIREs Computational Statistics, 2010, 2(4): 433-459. [22] 方莉娜, 卢丽靖, 赵志远, 等. 车载激光点云道路边界提取的Snake方法[J]. 测绘学报, 2020, 49(11): 1438-1450. DOI: 10.11947/j.AGCS.2020.20190370. FANG Lina, LU Lijing, ZHAO Zhiyuan, et al. Road boundaries extraction from mobile laser scanning point clouds based on discrete point Snake[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1438-1450. DOI: 10.11947/j.AGCS.2020.20190370. [23] 张志超. 融合机载与地面LIDAR数据的建筑物三维重建研究[D]. 武汉: 武汉大学, 2010. ZHANG Zhichao. Airborne and terrestrial LiDAR data fusion for 3D building reconstruction[D]. Wuhan: Wuhan University, 2010. [24] 赵传, 郭海涛, 卢俊, 等. 结合区域增长与RANSAC的机载LiDAR点云屋顶面分割[J]. 测绘学报, 2021, 50(5): 621-633. DOI: 10.11947/j.AGCS.2021.20200270. ZHAO Chuan, GUO Haitao, LU Jun, et al. Roof segmentation from airborne LiDAR by combining region growing with random sample consensus[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 621-633. DOI: 10.11947/j.AGCS.2021.20200270. [25] 郭杰, 刘建永, 张有亮, 等. 基于扫描线自适应角度限差法的地面点云滤波[J]. 计算机应用, 2011, 31(8): 2243-2245. GUO Jie, LIU Jianyong, ZHANG Youliang, et al. Filtering of ground point cloud based on scanning line and self-adaptive angle-limitation algorithm[J]. Journal of Computer Applications, 2011, 31(8): 2243-2245. [26] 詹总谦, 胡孟琦, 满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报, 2020, 49(6): 757-766. DOI: 10.11947/j.AGCS.2020.20190142. ZHAN Zongqian, HU Mengqi, MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 757-766. DOI: 10.11947/j.AGCS.2020.20190142. [27] SITHOLE G. Filtering of laser altimetry data using a slope adaptive filter[EB/OL].[2022-10-28]. https://www.isprs.org/proceedings/XXXIV/3-W4/pdf/Sithole.pdf. [28] BROVELLI M, CANNATA M, LONGONI U. Managing and processing LiDAR data within GRASS[C]// Proceedings of 2002 Open Source GIS-GRASS Users Conference. Trento:[s.n.], 2002: 1-29. [29] ZHANG Jixian, LIN Xiangguo. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 81: 44-59. |
[1] | CAI Longtao. Full-link forest echo simulation of domestic spaceborne LiDAR and study on inversion of forest structure parameters [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2223-2223. |
[2] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[3] | LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan. Remote sensing image change detection fusion method integrating multi-scale feature attention [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. |
[4] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[5] | HUANG Mingyi, WU Jun, GAO Jiongli. Seamless spherical video generation for multi-head panoramic camera(MPC) [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 703-717. |
[6] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[7] | ZHANG Zhimin. Study of annual mass balance estimation in the Tibetan plateau glaciers based on remote sensing albedo [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 781-781. |
[8] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[9] | WANG Jingxue, LIU Suyan, WANG Weixi. A checking algorithm for pair-wise line matching based on collinearity constraint and matching redundancy [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 746-756. |
[10] | ZHAN Zongqian, HU Mengqi, MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 757-766. |
[11] | HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. |
[12] | DENG Ruizhe, CHEN Qihao, CHEN Qi, LIU Xiuguo. A deformable feature pyramid network for ship detection from remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 787-797. |
[13] | HUANG Liang. Research on change detection technology in multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 801-801. |
[14] | WU Wenhao, ZHANG Lei, LI Tao, LONG Sichun, DUAN Meng, ZHOU Zhiwei, ZHU Chuanguang, JIANG Tingchen. Coregistration scheme and error analysis of multi-mode SAR image based on geometric coregistration [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1439-1451. |
[15] | ZHAO Shengyin, AN Ru, ZHU Meiru. Urban change detection by aerial remote sensing using combining features of pixel-depth-object [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1452-1463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||