Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (4): 629-643.doi: 10.11947/j.AGCS.2024.20220523
• Geodesy and Navigation • Previous Articles Next Articles
Received:
2022-09-01
Revised:
2023-06-30
Published:
2024-05-13
About author:
LUO Yiyong (1982—), male, PhD, professor, majors in ionosphere modeling based on GNSS and its applications. E-mail: ecityyluo@163.com
Supported by:
CLC Number:
Yiyong LUO, Dawei WU. Analysis of ionospheric disturbance induced by Tonga volcanic eruption on January 15, 2022 based on GPS TEC[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 629-643.
[1] | THEMENS D R, WATSON C, ŽAGAR N, et al. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption[J]. Geophysical Research Letters, 2022, 49(7):1-11. |
[2] | CHENG K, HUANG Y N. Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991[J]. Journal of Geophysical Research: Space Physics, 1992, 97(A11):16995-17004. |
[3] | HEKI K. Explosion energy of the 2004 eruption of the Asama volcano, central Japan, inferred from ionospheric disturbances[J]. Geophysical Research Letters, 2006, 33(14):L14303. |
[4] | DAUTERMANN T, CALAIS E, LOGNONNÉ P, et al. Lithosphere-atmosphere-ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills volcano, Montserrat[J]. Geophysical Journal International, 2009, 179(3):1537-1546. |
[5] | DAUTERMANN T, CALAIS E, MATTIOLI G S. Global positioning system detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufriere Hills volcano, Montserrat[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B2):257-262. |
[6] | NAKASHIMA Y, HEKI K, TAKEO A, et al. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals[J]. Earth and Planetary Science Letters, 2016, 434:112-116. |
[7] | SHULTS K, ASTAFYEVA E, ADOURIAN S. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events[J]. Journal of Geophysical Research: Space Physics, 2016, 121(10):303-315. |
[8] | 胡羽丰, 李振洪, 王乐, 等. 2022 年汤加火山喷发的综合遥感快速解译分析[J]. 武汉大学学报(信息科学版), 2022, 47(2):242-251. |
HU Yufeng, LI Zhenhong, WANG Le, et al. Rapid interpretation and analysis of the 2022 eruption of Hunga Tonga-Hunga Ha'apai volcano with integrated remote sensing techniques[J].Geomatics and Information Science of Wuhan University, 2022, 47(2):242-251. | |
[9] | 程巍, 滕鹏晓, 吕君, 等. 汤加火山喷发所产生的次声波[J]. 声学学报, 2022, 47(2):289-291. |
CHENG Wei, TENG Pengxiao, LÜ Jun, et al. On the infrasonic waves generated from the volcano eruption in Tonga[J]. Acta Acustica, 2022, 47(2):289-291. | |
[10] | ZHANG Shunrong, VIERINEN J, ERCHA A A, et al. 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via lamb waves[J]. Frontiers in Astronomy and Space Sciences, 2022, 9:871275. |
[11] | THEMENS D R, WATSON C, AGAR N, et al. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption[J]. Geophysical Research Letters, 2022, 49(7):1-14. |
[12] | LIN J T, RAJESH P K, LIN C C, et al. Rapid conjugate appearance of the giant ionospheric Lamb wave in the Northern hemisphere after Hunga-Tonga volcano eruptions[J]. Geophysical Research Letters, 2022, 49(8). |
[13] | HONG J, KIL H, LEE W K, et al. Detection of different properties of ionospheric perturbations in the vicinity of the Korean Peninsula after the Hunga-Tonga volcanic eruption on 15 January 2022[J]. ESS Open Archive, 202249(14):124-128. |
[14] | WRIGHT C J, HINDLEY N P, ALEXANDER M J, et al. Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha'apai eruption[J]. Nature, 2022, 609:741-746. |
[15] | 唐龙, 郭博峰, 李哲. 利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动[J]. 地球物理学报, 2017, 60(2):507-513. |
TANG Long, GUO Bofeng, LI Zhe. Detection of ionospheric disturbances driven by the 2011 Tohoku tsunami using GPS network in Japan[J]. Chinese Journal of Geophysics, 2017, 60(2):507-513. | |
[16] | 汤俊, 高鑫, 李垠健, 等. 2018年8月磁暴期间北斗GEO卫星电离层TEC时空变化分析[J]. 测绘学报, 2022, 51(3):317-326.DOI: 10.11947/j.AGCS.2022.20210013. |
TANG Jun, GAO Xin, LI Yinjian, et al. Spatial-temporal variations of the ionospheric TEC during the August 2018 geomagnetic storm by BeiDou GEO satellites[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3):317-326. DOI: 10.11947/j.AGCS.2022.20210013. | |
[17] | 程娜. 基于多源数据的电离层异常监测及GNSS影响效应研究[J]. 测绘学报, 2021, 50(9):1277.DOI: 10.11947/j.AGCS.2021.20200382. |
CHENG Na. Study on ionosphere anomaly monitoring based on multi-source data and its effect on GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1277. DOI: 10.11947/j.AGCS.2021.20200382. | |
[18] | 姚宜斌, 翟长治, 孔建, 等. 2015年尼泊尔地震的震前电离层异常探测[J]. 测绘学报, 2016, 45(4):385-395.DOI: 10.11947/j.AGCS.2016.20150384. |
YAO Yibin, ZHAI Changzhi, KONG Jian, et al. The pre-earthquake ionosphere anomaly of the 2015 Nepal earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):385-395. DOI: 10.11947/j.AGCS.2016.20150384. | |
[19] | PEREVALOVA N P, SHESTAKOV N V, VOEYKOV S V, et al. Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations[J]. Geophysical Research Letters, 2015, 42(16):6535-6543. |
[20] | HUANG C Y, HELMBOLDT J F, PARK J, et al. Ionospheric detection of explosive events[J]. Reviews of Geophysics, 2019, 57(1):78-105. |
[21] | HINES C O. Internal atmospheric gravity waves at ionospheric heights[J]. Canadian Journal of Physics, 1960, 38(11):1441-1481. |
[22] | HOOKE W H. Ionospheric response to internal gravity waves: 2. lower F region response[J]. Journal of Geophysical Research, 1970, 75(34):7229-7238. |
[23] | ASTAFYEVA E. Ionospheric detection of natural hazards[J]. Reviews of Geophysics, 2019, 57(4):1265-1288. |
[24] | COÏSSON P, OCCHIPINTI G, LOGNONNÉ P, et al. Tsunami signature in the ionosphere: a simulation of OTH radar observations[J]. Radio Science, 2011, 46(6):1-10. |
[25] | ROLLAND L M, LOGNONN'E P, ASTAFYEVA E, et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth, Planets and Space, 2011, 63(7):853-857. |
[26] | RAM S T, SUNIL P S, KUMAR M R, et al. Coseismic traveling ionospheric disturbances during the Mw 7.8 Gorkha, Nepal earthquake on 25 April 2015 from ground and spaceborne observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(10):10669-10685. |
[27] | LIU C H, KLOSTERMEYER J, YEH K C, et al. Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980[J]. Journal of Geophysical Research: Space Physics, 1982, 87(A8):6281-6290. |
[28] | 包云轩.气象学 [M]. 北京: 中国农业出版社, 2002: 93-94. |
BAO Yunxuan. Meteorology[M]. Beijing: China Agriculture Press, 2002: 93-94. | |
[29] | JIN Shuanggen, JIN Rui, LI J H. Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations[J]. Journal of Geophysical Research(Space Physics), 2014, 119(9):7914-7927. |
[30] | DING Feng, MAO Tian, HU Lianhuan, et al. GPS network observation of traveling ionospheric disturbances following the Chelyabinsk meteorite blast[J]. Annales Geophysicae, 2016, 34(11):1045-1051. |
[31] | ASTAFYEVA E, HEKI K, KIRYUSHKIN V, et al. Two-mode long-distance propagation of coseismic ionosphere disturbances[J]. Journal of Geophysical Research(Space Physics), 2009, 114(A10):A10307. |
[1] | Dongsheng ZHAO, Xueli ZHANG, Shuanglei CUI, Qianxin WANG, Guanqing LI, Longjiang LI, Chendong LI, Kefei ZHANG. Accuracy assessment of ionospheric scintillation monitoring in high-latitude regions of the northern hemisphere utilizing geodetic GNSS receivers based on ROTI and AATR [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1251-1264. |
[2] | Tieding LU, Zhen LI. Prediction and interpolation of GNSS vertical time series based on the AdaBoost method considering geophysical effects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1077-1085. |
[3] | Hao XU, Qin ZHANG, Li WANG, Bao SHU, Yuan DU, Guanwen HUANG. Intelligent site selection method for UAV-dropped GNSS landslide monitoring equipment [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1140-1153. |
[4] | Xinghai YANG, Linguo YUAN, Zhongshan JIANG, Miao TANG. Joint inversion of GNSS and GRACE/GRACE-FO data for terrestrial water storage changes in Southwest China [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 813-822. |
[5] | Canghai ZHOU, Zhen TIAN, Zhen SHI, Hayinaer TUOKAN. The characteristic of the Yadong-Gulu faults motion constraints by InSAR timeseries and GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 933-945. |
[6] | Tian HE, Guojie MENG, Weiwei WU, Xiaoning SU, Guoqiang ZHAO, Congmin WEI, Zhihua DONG. Preliminary analysis to positioning precision and crustal movement of BDS-3 data recorded by the China seismic experiment site [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 653-665. |
[7] | HU Chao, WANG Qianxin. GNSS ultra-rapid orbit and clock offset estimation method with the aid of the constraint of BDS-3 onboard clock [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 413-424. |
[8] | MU Mengxue, ZHAO Long. A distributed GNSS/SINS/odometer resilient fusion navigation method for land vehicle [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 425-434. |
[9] | WANG Xiaolei, NAN Yang, HE Xiufeng, SONG Minfeng. GNSS-IR retrieval method with consideration of tidal periodicity of sea level [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 482-492. |
[10] | HUANG Lingyong, LI Shizhong, XIA Junming, WANG Haiyan, SUN Yueqiang, YANG Rixin, DU Qifei, HUANG Zhiyong. Accurate verification and evaluation of on-board GNSS-R interferometric altimetry under on-shore conditions [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 239-251. |
[11] | LI Qianqian, BAO Lifeng, WANG Yong. Analysis of altimetry-derived sea surface observation anomalies for 2022 eruption of Tonga submarine volcano [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 263-273. |
[12] | ZHAO Qingzhi, MA Zhi, YAO Yibin, DU Zheng. GNSS-assisted FY-3 satellite atmospheric precipitable water retrieval method [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 306-320. |
[13] | WU Shuguang, BIAN Shaofeng, LI Houpu, LI Zhao, OUYANG Hua. Extraction of time-varying signals from GNSS height time series by variational mode decomposition [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 79-90. |
[14] | WANG Ershen, SUN Xinhui, QU Pingping, ZENG Hongzheng, XU Song, PANG Tao. ARAIM availability optimization method based on dynamic particle swarm optimization algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 137-145. |
[15] | LU Tieding, LI Zhen, HE Xiaoxing, ZHOU Shijian. GNSS vertical time series prediction method integrating VMD and XGBoost algorithms [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1235-1244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||