Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (6): 1098-1112.doi: 10.11947/j.AGCS.2024.20230405
• Smart Surveying and Mapping • Previous Articles Next Articles
Xiaogang NING(), Hanchao ZHANG(), Ruiqian ZHANG
Received:
2023-09-13
Published:
2024-07-22
Contact:
Hanchao ZHANG
E-mail:ningxg@casm.ac.cn;zhanghc@casm.ac.cn
About author:
NING Xiaogang (1979—), male, PhD, researcher, majors in natural resource monitoring and remote sensing applications. E-mail: ningxg@casm.ac.cn
Supported by:
CLC Number:
Xiaogang NING, Hanchao ZHANG, Ruiqian ZHANG. Practical framework and methodology for high-performance intelligent invariant detection in remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1098-1112.
Tab.1
Change detection dataset comparison"
数据集 | 分辨率/m | 变化类型 | 数据来源 | 分布地区 |
---|---|---|---|---|
SZTAKI[ | 1.5 | 新建城区、建筑作业、大批树木种植、耕地变化等 | 航空数据+谷歌地球 | 匈牙利佩斯州绍道 |
ABCD[ | 0.4 | 建筑物是否被冲走 | 航空数据 | 日本东北地区 |
WHU building CDD[ | 0.075 | 只关注建筑物变化 | 航空数据 | 克赖斯特彻奇 |
GZCD[ | 0.55 | 只标记建筑物变化 | 谷歌地球 | 广州 |
Lebedev-CD[ | 0.03~1 | 考虑不同大小对象变化(建筑物、道路、森林、汽车、树木、坦克等) | 谷歌地球 | — |
LEVIR-CD[ | 0.5 | 只关注建筑相关变化 | 谷歌地球 | 美国得克萨斯州 |
DSIFN-CD[ | 2 | 关注土地覆盖对象变化(道路、建筑物、农田、水体等地物) | 谷歌地球 | 北京、成都、深圳、重庆、武汉、西安 |
SYSU-CD[ | 0.5 | 新建城市建筑、郊区扩张、施工前的基础工作、植被变化、道路扩建、海上建设等 | 航空数据 | 香港 |
LIM-CD[ | 0.5~2 | 新增建设用地变化(如住宅建筑,工业、商业建设,公共、交通设施建设),特殊用途建筑(水利、园林、绿化等) | 镶嵌影像(15颗卫星) | 中国10个地形各异的省区市 |
Tab.2
Results of the local pseudo-change removal algorithm for 15 districts and counties"
行政区名称 | 真实变化图斑个数 | 不变区域掩膜外的变化图斑个数 | 压盖准度/(%) | 压盖幅度/(%) |
---|---|---|---|---|
北京市门头沟区 | 65 | 61 | 93.85 | 93.54 |
河北省石家庄市深泽县 | 65 | 61 | 93.85 | 85.41 |
山西省临汾市侯马市 | 33 | 31 | 93.94 | 73.82 |
内蒙古锡林郭勒盟正镶白旗 | 98 | 93 | 94.90 | 97.75 |
吉林省白山市浑江区 | 85 | 72 | 84.71 | 94.55 |
江苏省扬州市高邮市 | 185 | 165 | 89.19 | 93.44 |
浙江省杭州市桐庐县 | 153 | 141 | 92.16 | 92.31 |
浙江省宁波市象山县 | 268 | 223 | 83.21 | 89.25 |
安徽省合肥市蜀山区 | 260 | 238 | 91.54 | 77.60 |
安徽省六安市金安区 | 266 | 235 | 88.35 | 93.53 |
福建省泉州市泉港区 | 50 | 48 | 96.00 | 70.59 |
河南省新乡市获嘉县 | 76 | 72 | 94.74 | 83.91 |
湖南省长沙市雨花区 | 78 | 75 | 96.15 | 88.90 |
湖南省株洲市天元区 | 69 | 69 | 100.00 | 80.24 |
湖南省湘西土家族苗族自治州花垣县 | 107 | 92 | 85.98 | 87.34 |
平均 | 91.90 | 86.81 |
[1] | 唐新明, 王鸿燕. 我国民用光学卫星测绘产品体系的建立与应用[J]. 测绘学报, 2022, 51(7):1386-1397. DOI:10.11947/j.AGCS.2022.20220181. |
TANG Xinming, WANG Hongyan. Establishment and application of China civil optical satellite surveying and mapping products[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1386-1397. DOI:10.11947/j.AGCS.2022.20220181. | |
[2] | 张继贤, 顾海燕, 杨懿, 等. 自然资源要素智能解译研究进展与方向[J]. 测绘学报, 2022, 51(7):1606-1617. DOI:10.11947/j.AGCS.2022.20220109. |
ZHANG Jixian, GU Haiyan, YANG Yi, et al. Research progress and trend of intelligent interpretation for natural resources features[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1606-1617. DOI:10.11947/j.AGCS.2022.20220109. | |
[3] | 李德仁, 张华. 我国测绘遥感技术发展的回顾与展望[J]. 中国测绘, 2019 (2):24-27. |
LI Deren, ZHANG Hua. Review and prospect of the development of surveying and mapping remote sensing technology in China[J]. China Surveying and Mapping, 2019 (2):24-27. | |
[4] | ASOKAN A, ANITHA J. Change detection techniques for remote sensing applications: a survey[J]. Earth Science Informatics, 2019, 12(2):143-160. |
[5] | 龚健雅, 张觅, 胡翔云, 等. 智能遥感深度学习框架与模型设计[J]. 测绘学报, 2022, 51(4):475-487. DOI:10.11947/j.AGCS.2022.20220027. |
GONG Jianya, ZHANG Mi, HU Xiangyun, et al. The design of deep learning framework and model for intelligent remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4):475-487. DOI:10.11947/j.AGCS.2022.20220027. | |
[6] | 张兵. 遥感大数据时代与智能信息提取[J]. 武汉大学学报(信息科学版), 2018, 43(12):1861-1871. |
ZHANG Bing. Remotely sensed big data era and intelligent information extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1861-1871. | |
[7] | 张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8):1068-1083. |
ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1068-1083. | |
[8] | 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005. DOI:10.11947/j.AGCS.2021.20210235. |
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005. DOI:10.11947/j.AGCS.2021.20210235. | |
[9] | WAN Xue, LIU Jianguo, LI Shengyong, et al. An illumination-invariant change detection method based on dispartity saliency map for multitemporal optical remotely sensed images[J]. IEEE Transcations on Geoscience and Remote Sensing, 2018, 57(3):1311-1324. |
[10] | LV Zhiyong, LIU Tongfei, BENEDIKTSSON J A, et al. Land cover change detection techniques: very-high-resolution optical images: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1):44-63. |
[11] | LIU Sicong, MARINELLI D, BRUZZONE L, et al. A review of change detection in multitemporal hyperspectral images: current techniques, applications, and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):140-158. |
[12] | 周启鸣. 多时相遥感影像变化检测综述[J]. 地理信息世界, 2011, 9(2):28-33. |
ZHOU Qiming. Review on change detection using multi-temporal remotely sensed imagery[J]. Geomatics World, 2011, 9(2):28-33. | |
[13] | 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459. DOI:10.11947/j.AGCS.2017.20170340. |
ZHANG Liangpei, WU Chen. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1447-1459. DOI:10.11947/j.AGCS.2017.20170340. | |
[14] | 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12):1885-1898. |
SUI Haigang, FENG Wenqing, LI Wenzhuo, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898. | |
[15] | CHUGHTAI A H, ABBASI H, KARAS I R. A review on change detection method and accuracy assessment for land use land cover[J]. Remote Sensing Applications: Society and Environment, 2021, 22:100482. |
[16] | GOMEZ C, WHITE J C, WULDER M A. Optical remotely sensed time series data for land cover classification: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:55-72. |
[17] | HAN Y, JAVED A, JUNG S, et al. Object-based change detection of very high resolution images by fusing pixel-based change detection results using weighted dempster-shafer theory[J]. Remote Sensing, 2020, 12(6):983. |
[18] | HOSSAIN M D, CHEN Dongmei. Segmentation for object-based image analysis (OBIA): a review of algorithms and challenges from remote sensing perspective[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:115-134. |
[19] | 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1):182-197. |
ZHOU Peicheng, CHENG Gong, YAO Xiwen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1):182-197. | |
[20] | KHELIFI L, MIGNOTTE M. Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis[J]. IEEE Access, 2020, 8:126385-126400. |
[21] | SHI Wenzhong, ZHANG Min, ZHANG Rui, et al. Change detection based on artificial intelligence: state-of-the-art and challenges[J]. Remote Sensing, 2020, 12(10):1688. |
[22] | GAO Yunhao, GAO Feng, DONG Junyu, et al. Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4517-4529. |
[23] | ALWAN Y, CELENK M. Using combined linear regression and principal component analysis for unsupervised change detection of forest fire[C]//Proceedings of 2020 International Engineering Conference. Erbil: IEEE, 2020: 152-156. |
[24] | JIANG Xiao, LI Gang, LIU Yu, et al. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1551-1566. DOI:10.1109/JSTARS.2020.2983993. |
[25] | WAN Ling, XIANG Yuming, YOU Hongjian. A post-classification comparison method for SAR and optical images change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7):1026-1030. |
[26] | 王昶, 张永生, 王旭. 基于变分法与Markov随机场模糊局部信息聚类法的SAR影像变化检测[J]. 武汉大学学报(信息科学版), 2021, 46(6):844-851. |
WANG Chang, ZHANG Yongsheng, WANG Xu. SAR image change detection based on variational method and Markov random field fuzzy local information C-means clustering method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6):844-851. | |
[27] | SHI Sunan, ZHONG Yanfei, ZHAO Ji, et al. Land-use/land-cover change detection based on class-prior object-oriented conditional random field framework for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3034373. |
[28] | JING Ran, LIU Shuang, GONG Zhaoning, et al. Object-based change detection for VHR remote sensing images based on a Trisiamese-LSTM[J]. International Journal of Remote Sensing, 2020, 41(16):6209-6231. |
[29] | 张正健, 李爱农, 雷光斌, 等. 基于多尺度分割和决策树算法的山区遥感影像变化检测方法:以四川攀西地区为例[J]. 生态学报, 2014, 34(24):7222-7232. |
ZHANG Zhengjian, LI Ainong, LEI Guangbin, et al. Change detection of remote sensing images based on multiscale segmentation and decision tree algorithm over mountainous area: a case study in Panxi region, Sichuan province[J]. Acta Ecologica Sinica, 2014, 34(24):7222-7232. | |
[30] | TAN Kun, ZHANG Yusha, WANG Xue, et al. Object-based change detection using multiple classifiers and multi-scale uncertainty analysis[J]. Remote Sensing, 2019, 11(3):359. |
[31] | GANDHIMATHI A U S, VASUKI S. A novel method for segmentation and change detection of satellite images using proximal splitting algorithm and multiclass SVM[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(5):853-865. |
[32] | KHURANA M, SAXENA V. A unified approach to change detection using an adaptive ensemble of extreme learning machines[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5):794-798. |
[33] | DAHY B, ISSA S, SALEOUS N. A review of land change modelling techniques using Remote sensing and GIS[C]//Proceedings of the 42nd Asian Conference on Remote Sensing. Can Tho City: Asian Association on Remote Sensing, 2021: 1-10. |
[34] | SU Hang, ZHANG Xinzheng, LUO Yuqing, et al. Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193:137-149. |
[35] | SAMADI F, AKBARIZADEH G, KAABI H. Change detection in SAR images using deep belief network: a new training approach based on morphological images[J]. IET Image Processing, 2019, 13(12):2255-2264. |
[36] | MESQUITA D B, DOS SANTOS R F, MACHARET D G, et al. Fully convolutional Siamese autoencoder for change detection in UAV aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8):1455-1459. |
[37] | LI Xinghua, DU Zhengshun, HUANG Yanyuan, et al. A deep translation (GAN) based change detection network for optical and SAR remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179:14-34. |
[38] | BANDARA W G C, PATEL V M. A transformer-based Siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur: IEEE, 2022: 207-210. |
[39] | IMANI M, GHASSEMIAN H. An overview on spectral and spatial information fusion for hyperspectral image classification: current trends and challenges[J]. Information Fusion, 2020, 59:59-83. |
[40] | YOU Yanan, CAO Jingyi, ZHOU Wenli. A survey of change detection methods based on remote sensing images for multi-source and multi-objective scenarios[J]. Remote Sensing, 2020, 12(15):2460. |
[41] | WANG Wei, ZHU Linye, LI Lingling, et al. A land trendr algorithm-based study of forest disturbance from 2000 to 2020 in Jilin province, China[J]. Polish Journal of Environmental Studies, 2022, 32(1):309-319. |
[42] | ZHAO Xiaoyang, ZHAO Keyun, LI Siyao, et al. GeSANet: geospatial-awareness network for VHR remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3272550. |
[43] | HOU Xuan, BAI Yunpeng, LI Ying, et al. High-resolution triplet network with dynamic multiscale feature for change detection on satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177:103-115. |
[44] | BENEDEK C, SZIRANYI T. Change detection in optical aerial images by a multilayer conditional mixed Markov model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10):3416-3430. |
[45] | FUJITA A, SAKURADA K, IMAIZUMI T, et al. Damage detection from aerial images via convolutional neural networks[C]//Proceedings of 2017 IAPR International Conference on Machine Vision Applications. Nagoya: IEEE, 2017: 5-8. |
[46] | JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586. |
[47] | PENG Daifeng, BRUZZONE L, ZHANG Yongjun, et al. SemiCDNet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5891-5906. |
[48] | LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 422:565-571. |
[49] | CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662. |
[50] | ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:183-200. |
[51] | SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3085870. |
[52] | ZHANG H, ZHANG R, NING X, et al. Lim-cd: a large-scale remote sensing change detection dataset for incremental monitoring[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 10:903-910. |
[53] | 徐强强, 刘正军, 龙亚斐, 等. 面向对象的迭代加权多变量变化检测方法[J]. 遥感信息, 2017, 32(5):57-61. |
XU Qiangqiang, LIU Zhengjun, LONG Yafei, et al. Change detection method based on object oriented IR-MAD[J]. Remote Sensing Information, 2017, 32(5):57-61. | |
[54] | 李金基, 焦李成, 张向荣, 等. 基于两时相图像联合分类的SAR图像变化检测[J]. 红外与毫米波学报, 2009, 28(6):466-471. |
LI Jinji, JIAO Licheng, ZHANG Xiangrong, et al. Change detection for SAR images based on joint-classification of bi-temporal images[J]. Journal of Infrared and Millimeter Waves, 2009, 28(6):466-471. | |
[55] | NING Xiaogang, ZHANG Hanchao, ZHANG Ruiqian, et al. Multi-stage progressive change detection on high resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207:231-244. |
[56] | ZHU Liujun, WALKER J P, YE Nan, et al. Roughness and vegetation change detection: a pre-processing for soil moisture retrieval from multi-temporal SAR imagery[J]. Remote Sensing of Environment, 2019, 225:93-106. |
[57] | 龚健雅, 许越, 胡翔云, 等. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8):1013-1022. DOI:10.11947/j.AGCS.2021.20210085. |
GONG Jianya, XU Yue, HU Xiangyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1013-1022. DOI:10.11947/j.AGCS.2021.20210085. | |
[58] | BAKUROV I, BUZZELLI M, SCHETTINI R, et al. Structural similarity index (SSIM) revisited: a data-driven approach[J]. Expert Systems with Applications, 2022, 189:116087. |
[59] | BAGWAN W A, SOPAN GAVALI R. Dam-triggered land use land cover change detection and comparison (transition matrix method) of Urmodi river watershed of Maharashtra, India: a remote sensing and GIS approach[J]. Geology, Ecology, and Landscapes, 2023, 7(3):189-197. |
[60] | HOU Zengfu, LI Wei, LI Lu, et al. Hyperspectral change detection based on multiple morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3090802. |
[61] | NIU Yiting, GUO Haitao, LU Jun, et al. SMNet: symmetric multi-task network for semantic change detection in remote sensing images based on CNN and transformer[J]. Remote Sensing, 2023, 15(4):949. |
[1] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[2] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
[3] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[4] | WEI Chuntao, GONG Cheng, ZHOU Yongxu. A change detection network with joint spatial constraints and differential feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1538-1547. |
[5] | LI Shutao, WU Qiong, KANG Xudong. Hyperspectral remote sensing image intrinsic information decomposition: advances and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1059-1073. |
[6] | WANG Chao, WANG Shuai, CHEN Xiao, LI Junyong, XIE Tao. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296. |
[7] | SHEN Ziyang, NI Huan, GUAN Haiyan. Unsupervised domain adaptation alignment method for cross-domain semantic segmentation of remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2115-2126. |
[8] | JIANG Ming, ZHANG Xinchang, SUN Ying, FENG Weiming, RUAN Yongjian. Full-scale feature aggregation network for high-resolution remote sensing image change detection [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1738-1748. |
[9] | YE Yuanxin, SUN Miaomiao, ZHOU Liang, YANG Chao, LIU Tianyi, HAO Siyuan. Main body, edge decomposition and reorganization network for building change detection [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 71-81. |
[10] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[11] | YANG Bisheng, CHEN Chi, DONG Zhen. 3D geospatial information extraction of urban objects for smart surveying and mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1476-1484. |
[12] | LIU Jingnan, LUO Yarong, GUO Chi, GAO Kefu. PNT intelligence and intelligent PNT [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828. |
[13] | WANG Jiayao, WU Fang, YAN Haowen. Cartography:its past, present and future [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 829-842. |
[14] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[15] | LI Rongxing, LI Guojun, FENG Tiantian, SHEN Qiang, QIAO Gang, YE Zhen, XIA Menglian. A review of Antarctic ice velocity products and methods based on optical remote sensing satellite images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 953-963. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||