Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (8): 1624-1633.doi: 10.11947/j.AGCS.2024.20230198
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Tao XU1(
), Yuanwei YANG1(
), Xianjun GAO1,2, Zhiwei WANG3, Yue PAN3, Shaohua LI1, Lei XU4, Yanjun WANG5,6, Bo LIU2, Jing YU7, Fengmin WU7, Haoyu SUN1
Received:2023-06-08
Published:2024-09-25
Contact:
Yuanwei YANG
E-mail:2021720578@yangtze.edu.cn;2021720578@yangtze.edu.cn;yyw_08@yangtzeu.edu.cn
About author:XU Tao (1998—), male, postgraduate, majors in the semantic segmentation of 3D point cloud data. E-mail: 2021720578@yangtze.edu.cn
Supported by:CLC Number:
Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633.
Tab.2
Quantitative evaluation results of the comparative methods for each category in the OCS dataset"
| 方法 | 评价精度 | 承力索 | 定位器 | 斜腕臂 | 直腕臂 | 弹性吊索 | 定位管 | 背景 | 吊弦 | 接触线 |
|---|---|---|---|---|---|---|---|---|---|---|
| PointNet | P | 83.20 | 70.23 | 77.09 | 74.70 | 79.42 | 62.24 | 50.04 | 88.17 | 98.29 |
| R | 90.54 | 81.88 | 92.94 | 98.16 | 63.18 | 87.72 | 48.32 | 57.58 | 97.03 | |
| mIoU | 76.55 | 60.79 | 72.82 | 73.67 | 64.29 | 61.25 | 50.09 | 53.46 | 95.42 | |
| F1值 | 86.72 | 75.61 | 84.28 | 84.84 | 70.38 | 72.82 | 49.17 | 69.67 | 97.66 | |
| PointNet++ | P | 86.86 | 96.36 | 94.63 | 94.56 | 84.65 | 91.63 | 87.76 | 83.66 | 96.1 |
| R | 90.65 | 93.65 | 96.28 | 92.34 | 86.33 | 93.36 | 87.36 | 83.09 | 98.19 | |
| mIoU | 76.12 | 86.95 | 91.36 | 91.92 | 72.58 | 88.50 | 79.36 | 80.91 | 94.93 | |
| F1值 | 88.71 | 94.99 | 95.46 | 93.45 | 85.48 | 92.49 | 87.56 | 83.37 | 97.13 | |
| DGCNN | P | 92.81 | 98.55 | 96.62 | 96.56 | 86.80 | 93.07 | 87.98 | 85.61 | 99.33 |
| R | 92.69 | 94.74 | 94.89 | 96.56 | 87.80 | 95.51 | 87.29 | 85.69 | 99.19 | |
| mIoU | 86.48 | 93.44 | 91.85 | 93.34 | 77.46 | 89.17 | 77.99 | 74.90 | 98.53 | |
| F1值 | 92.75 | 96.61 | 95.75 | 96.56 | 87.30 | 94.27 | 87.63 | 85.65 | 99.26 | |
| PointNeXt | P | 90.34 | 98.56 | 99.27 | 94.70 | 95.18 | 96.55 | 93.31 | 94.25 | 98.87 |
| R | 96.65 | 96.07 | 94.98 | 98.87 | 85.69 | 98.69 | 92.86 | 88.56 | 99.71 | |
| mIoU | 87.60 | 94.75 | 94.32 | 93.69 | 82.13 | 95.33 | 87.06 | 84.03 | 98.58 | |
| F1值 | 93.39 | 97.30 | 97.08 | 96.74 | 90.19 | 97.61 | 93.08 | 91.32 | 99.29 | |
| Pix4point | P | 96.49 | 96.59 | 99.36 | 94.76 | 91.56 | 87.91 | 91.12 | 89.71 | 99.56 |
| R | 97.26 | 93.67 | 95.05 | 98.48 | 93.86 | 97.85 | 92.13 | 88.46 | 99.44 | |
| mIoU | 91.13 | 90.67 | 94.47 | 93.39 | 86.39 | 86.24 | 89.90 | 77.89 | 99.00 | |
| F1值 | 96.87 | 95.11 | 97.16 | 96.59 | 92.70 | 92.61 | 91.62 | 89.08 | 99.50 | |
| GDM-Net | P | 96.25 | 98.69 | 98.15 | 96.24 | 94.53 | 91.64 | 93.61 | 91.84 | 99.53 |
| R | 96.85 | 94.67 | 95.16 | 97.81 | 90.18 | 97.91 | 92.94 | 87.38 | 99.61 | |
| mIoU | 91.45 | 93.49 | 93.48 | 94.21 | 87.71 | 89.88 | 89.06 | 81.09 | 99.15 | |
| F1值 | 95.53 | 96.64 | 96.63 | 97.02 | 92.31 | 94.67 | 93.27 | 89.56 | 99.57 |
Tab.3
Quantitative evaluation of the comparative methods on the OCS point cloud dataset"
| 方法 | P | R | OA | mIoU | F1值 |
|---|---|---|---|---|---|
| PointNet | 75.93 | 79.70 | 88.26 | 64.09 | 77.77 |
| PointNet++ | 90.69 | 91.25 | 92.34 | 84.37 | 90.96 |
| DGCNN | 93.04 | 92.71 | 94.93 | 87.02 | 92.87 |
| PointNeXt | 95.67 | 94.68 | 96.05 | 90.83 | 95.17 |
| Pix4point | 94.12 | 95.13 | 96.54 | 89.90 | 94.62 |
| GDM-Net | 95.61 | 94.94 | 96.73 | 91.06 | 95.28 |
Tab.5
Quantitative evaluation of the comparative methods on the urban railway dataset"
| 方法 | mIoU | 类别名称 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 轨道 | 道床 | 悬链线 | 围栏 | 植被 | 立柱 | 钢结构 | 地面 | 建筑物 | 支持装置 | 背景点 | ||
| PointNet | 11.72 | 5.51 | 6.83 | 13.66 | 7.01 | 38.20 | 2.36 | 7.66 | 25.49 | 6.45 | 7.56 | 8.21 |
| PointNet++ | 34.28 | 25.86 | 36.63 | 56.36 | 15.63 | 60.82 | 9.62 | 23.36 | 57.36 | 32.36 | 28.69 | 30.35 |
| DGCNN | 24.05 | 21.08 | 16.89 | 26.31 | 17.21 | 61.15 | 9.63 | 8.65 | 38.15 | 19.63 | 9.56 | 36.30 |
| PointNeXt | 75.19 | 80.72 | 73.23 | 62.92 | 81.61 | 88.28 | 65.39 | 74.64 | 83.36 | 90.82 | 60.61 | 65.59 |
| Pix4Point | 71.54 | 71.84 | 44.66 | 74.19 | 45.19 | 89.99 | 64.34 | 67.81 | 79.72 | 91.58 | 62.64 | 94.94 |
| GDM-Net | 81.52 | 90.63 | 78.69 | 76.33 | 88.37 | 93.61 | 68.37 | 72.63 | 85.39 | 85.68 | 68.36 | 88.65 |
| [1] | LIN Shuai, XU Cheng, CHEN Lipei, et al. LiDAR point cloud recognition of overhead catenary system with deep learning[J]. Sensors, 2020, 20(8): 2212-2228. |
| [2] | TU Xiaohan, XU Cheng, LIU Siping, et al. LiDAR point cloud recognition and visualization with deep learning for overhead contact inspection[J]. Sensors, 2020, 20(21): 6387-6404. |
| [3] | 杨元维, 张跃, 高贤君, 等. 顾及空间关系的3D LiDAR铁路支持装置自动提取[J]. 浙江大学学报(工学版), 2022, 56(10): 2066-2076. |
| YANG Yuanwei, ZHANG Yue, GAO Xianjun, et al. Automatic extraction of spatially relevant 3D LiDAR railway support facility[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(10): 2066-2076. | |
| [4] | 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516. DOI: 10.11947/j.AGCS.2017.20170351. |
| YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509-1516. DOI: 10.11947/j.AGCS.2017.20170351. | |
| [5] | 周靖松, 韩志伟, 杨长江. 基于三维点云的接触网几何参数检测方法[J]. 仪器仪表学报, 2018, 39(4): 239-246. |
| ZHOU Jingsong, HAN Zhiwei, YANG Changjiang. Catenary geometric parameters detection method based on 3D point cloud[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 239-246. | |
| [6] | 张东, 余朝刚. 基于激光扫描的接触网几何参数检测方法研究[J]. 计算机测量与控制, 2016, 24(1): 57-60. |
| ZHANG Dong, YU Chaogang. Catenary geometry parameter detection method based on laser scanning[J]. Computer Measurement & Control, 2016, 24(1): 57-60. | |
| [7] | 罗隆福, 叶威, 王健. 基于深度学习的高铁接触网顶紧螺栓的缺陷检测[J]. 铁道科学与工程学报, 2021, 18(3): 605-614. |
| LUO Longfu, YE Wei, WANG Jian. Defect detection of the puller bolt in high-speed railway catenary based on deep learning[J]. Journal of Railway Science and Engineering, 2021, 18(3): 605-614. | |
| [8] | XIE Yuxing, TIAN Jiaojiao, ZHU Xiaoxiang. Linking points with labels in 3D: a review of point cloud semantic segmentation[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 38-59. |
| [9] | DERPANIS K G. Overview of the RANSAC algorithm[J]. Image Rochester NY, 2010, 4(1): 2-3. |
| [10] | SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42(3): 1-21. |
| [11] | AHMAD A, DEY L. A k-mean clustering algorithm for mixed numeric and categorical data[J]. Data & Knowledge Engineering, 2007, 63(2): 503-527. |
| [12] | ZHANG Jixian, LIN Xiangguo, NING Xiaogang. SVM-based classification of segmented airborne LiDAR point clouds in urban areas[J]. Remote Sensing, 2013, 5(8): 3749-3775. |
| [13] | 孙杰, 赖祖龙. 利用随机森林的城区机载LiDAR数据特征选择与分类[J]. 武汉大学学报(信息科学版), 2014, 39(11): 1310-1313. |
| SUN Jie, LAI Zulong. Airborne LiDAR feature selection for urban classification using random forests[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1310-1313. | |
| [14] | LALONDE J F, UNNIKRISHNAN R, VANDAPEL N, et al. Scale selection for classification of point-sampled 3D surfaces[C]//Proceedings of 2005 International Conference on 3D Digital Imaging and Modeling. Ottawa: IEEE, 2005: 285-292. |
| [15] | 张广斌, 高贤君, 冉树浩, 等. 高分遥感影像云雪共存区轻量云高精度检测方法[J]. 测绘学报, 2023, 52(1): 93-107. DOI: 10.11947/j.AGCS.2023.20210686. |
| ZHANG Guangbin, GAO Xianjun, RAN Shuhao, et al. Accurate and lightweight cloud detection method based on cloud and snow coexistence region of high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 93-107. DOI: 10.11947/j.AGCS.2023.20210686. | |
| [16] | 张佳颖, 赵晓丽, 陈正. 基于深度学习的点云语义分割综述[J]. 激光与光电子学进展, 2020, 57(4): 28-46. |
| ZHANG Jiaying, ZHAO Xiaoli, CHEN Zheng. Review of semantic segmentation of point cloud based on deep learning[J]. Laser & Optoelectronics Progress, 2020, 57(4): 28-46. | |
| [17] | YANG Zhixin, TANG Lulu, ZHANG Kun, et al. Multi-view CNN feature aggregation with ELM auto-encoder for 3D shape recognition[J]. Cognitive Computation, 2018, 10(6): 908-921. |
| [18] | RIEGLER G, ULUSOY A O, GEIGER A. OctNet: learning deep 3D representations at high resolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6620-6629. |
| [19] | CHARLES R Q, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 77-85. |
| [20] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30: 5099-5108. |
| [21] | WANG Yue, SUN Yongbin, LIU Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. |
| [22] | GRAHAM B, ENGELCKE M, VAN DER MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9224-9232. |
| [23] | WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. |
| [24] | JIANG Tengping, YANG Bisheng, WANG Yongjun, et al. RailSeg: learning local-global feature aggregation with contextual information for railway point cloud semantic segmentation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-29. |
| [25] | RUBINSTEIN R Y, KROESE D P. A tutorial introduction to the cross-entropy method[M]//Information science and statistics. New York: Springer, 2004: 29-58. |
| [26] | CHEN Zhanlong, LI Shuangjiang, XU Yongyang, et al. Correg-Yolov3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 51-61. |
| [27] | QIAN Guocheng, LI Yuchen, PENG Houwen, et al. Pointnext: revisiting Pointnet++ with improved training and scaling strategies[J]. Advances in Neural Information Processing Systems, 2022, 35: 23192-23204. |
| [1] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [2] | Yanan JIANG, Linfeng ZHENG, Qiang XU, Minggao TANG, Xing ZHU. Step-like displacement prediction of landslides guided by deformation mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1128-1139. |
| [3] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
| [4] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [5] | Changqi JI, Zhaojie GUO, Haili SUN, Ruofei ZHONG. Location and rapid detection method of water leakage in subway tunnels based on mobile laser scanning [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1236-1250. |
| [6] | QIAN Chuang, ZHANG Hongjuan, LI Wenzhuo, LIU Hui, LI Bijun. A LiDAR/IMU spatial calibration method based on LiDAR labels and occupancy grid map [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1469-1479. |
| [7] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
| [8] | AN Xiaoya, ZHU Yude, YAN Xiongfeng. A building selection method supported by graph convolutional network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1574-1583. |
| [9] | LI Pengfei, LI Dou, HU Jinfei, YAO Wanqiang, ZANG Yuzhe. Assessing the ability of airborne LiDAR to monitor soil erosion on the Chinese Loess Plateau [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1342-1354. |
| [10] | ZHANG Yichao, ZHENG Xiangtao, LU Xiaoqiang. Hyperspectral image classification method based on hierarchical transformer network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1139-1147. |
| [11] | WANG Dandi, XU Qing, XING Shuai, LIN Yuzhun, ZHANG Guoping. Semi-empirical waveform decomposition method for correction of near water surface penetration error in airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 944-955. |
| [12] | HU Gongming, YANG Chuncheng, XU Li, SHANG Haibin, WANG Zefan, QIN Zhilong. Improved U-Net remote sensing image semantic segmentation method [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 980-989. |
| [13] | GU Xiaohu, LI Zhengjun, MIAO Jianhao, LI Xinghua, SHEN Huanfeng. Dual-channel parallel hybrid convolutional neural networks based classification method for high-resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 798-807. |
| [14] | HU Minghong, LI Jiatian, YAO Yanji, A Xiaohui, LU Mei, LI Wen. SER-UNet algorithm for building extraction from high-resolution remote sensing image combined with multipath [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 808-817. |
| [15] | WANG Peixiao, ZHANG Tong, NIE Shichao, YANG Jinxuan, WANG Tianjiao. A causal graph convolutional network considering missing values for spatio-temporal prediction [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 818-830. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||