[1] BAMBER J, VAN DEN BROEKE M, ETTEMA J, et al. Recent large increases in freshwater fluxes from Greenland into the North Atlantic[J]. Geophysical Research Letters, 2012, 39(19):L19501. [2] ENDERLIN E M, HOWAT I M, JEONG S, et al. An improved mass budget for the Greenland ice sheet[J]. Geophysical Research Letters, 2014, 41(3):866-872. [3] RIGNOT E, VELICOGNA I, VAN DEN BROEKE M R, et al. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise[J]. Geophysical Research Letters, 2011, 38(5):L05503. [4] DUPRAT L P A M, BIGG G R, WILTON D J. Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs[J]. Nature Geoscience, 2016, 9(3):219-221. [5] MARTIN T, ADCROFT A. Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model[J]. Ocean Modelling, 2010, 34(3-4):111-124. [6] SILVA T A M, BIGG G R. Computer-based identification and tracking of Antarctic icebergs in SAR images[J]. Remote Sensing of Environment, 2005, 94(3):287-297. [7] WESCHE C, DIERKING W. Iceberg signatures and detection in SAR images in two test regions of the Weddell Sea, Antarctica[J]. Journal of Glaciology, 2012, 58(208):325-339. [8] LANE K, POWER D, CHAKRABORTY I, et al. RADARSAT-1 synthetic aperture radar iceberg detection performance ADRO-2 A223[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto:IEEE, 2002. [9] LANE K, POWER D, YOUDEN J, et al. Validation of synthetic aperture radar for iceberg detection in sea ice[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage:IEEE, 2004. [10] HOWELL C, MILLS J, POWER D, et al. A multivariate approach to iceberg and ship classification in HH/HV ASAR data[C]//Proceedings of 2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver:IEEE, 2006. [11] WESCHE C, DIERKING W. Iceberg signatures and detection in SAR images in two test regions of the Weddell Sea, Antarctica[J]. Journal of Glaciology, 2012, 58(208):325-339. [12] CLEVE C, KELLY M, KEARNS F R, et al. Classification of the wildland-urban interface:a comparison of pixel- and object-based classifications using high-resolution aerial photography[J]. Computers, Environment and Urban Systems, 2008, 32(4):317-326. [13] WHITESIDE T G, BOGGS G S, MAIER S W. Comparing object-based and pixel-based classifications for mapping savannas[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(6):884-893. [14] FISCELLA B, GIANCASPRO A, NIRCHIO F, et al. Oil spill detection using marine SAR images[J]. International Journal of Remote Sensing, 2000, 21(18):3561-3566. [15] STATHAKIS D, TOPOUZELIS K, KARATHANASSI V. Large-scale feature selection using evolved neural networks[C]//Proceedings of the SPIE 6365, Image and Signal Processing for Remote Sensing Ⅻ. Stockholm:SPIE, 2006:636513. [16] BRENNING A, KADEN K, ITZEROTT S. Comparing classifiers for crop identification based on multitemporal Landsat TM/ETM data[C]//Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover. Bonn:[s.n.], 2006:30. [17] BRENNING A. Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection[J]. Remote Sensing of Environment, 2009, 113(1):239-247. [18] 赵诣, 蒋弥. 极化SAR参数优化与光学波谱相结合的面向对象土地覆盖分类[J]. 测绘学报, 2019, 48(5):609-617. DOI:10.11947/j.AGCS.2019.20170746. ZHAO Yi, JIANG Mi. Integration of SAR polarimetric parameters and multi-spectral data for object-based land cover classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):609-617. DOI:10.11947/j.AGCS.2019.20170746. [19] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:23-47. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016:23-47. [20] WILLIS C J, MACKLIN J T, PARTINGTON K C, et al. Iceberg detection using ERS-1 synthetic aperture radar[J]. International Journal of Remote Sensing, 1996, 17(9):1777-1795. [21] 赵泉华, 郭世波, 李晓丽, 等. 利用目标分解特征的全极化SAR海冰分类[J]. 测绘学报, 2018, 47(12):1609-1620. DOI:10.11947/j.AGCS.2018.20170551. ZHAO Quanhua, GUO Shibo, LI Xiaoli, et al. Polarimetric SAR sea ice classification based on target decompositional features[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12):1609-1620. DOI:10.11947/j.AGCS.2018.20170551. [22] BLASCHKE T, HAY G J, KELLY M, et al. Geographic object-based image analysis-towards a new paradigm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:180-191. [23] 明冬萍, 邱玉芳, 周文. 遥感模式分类中的空间统计学应用——以面向对象的遥感影像农田提取为例[J]. 测绘学报, 2016, 45(7):825-833. DOI:10.11947/j.AGCS.2016.20150520. MING Dongping, QIU Yufang, ZHOU Wen. Applying spatial statistics into remote sensing pattern recognition:with case study of cropland extraction based on GeoBIA[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):825-833. DOI:10.11947/j.AGCS.2016.20150520. [24] 张仙, 明冬萍. 面向地学应用的遥感影像分割评价[J]. 测绘学报, 2015, 44(S1):108-116. DOI:10.11947/j.AGCS.2015.F041. ZHANG Xian, MING Dongping. Geo-application oriented evaluations of remote sensing image segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(S1):108-116. DOI:10.11947/j.AGCS.2015.F041. [25] 齐丽娜, 张博, 王战凯. 最大类间方差法在图像处理中的应用[J]. 无线电工程, 2006, 36(7):25-26, 44. QI Lina, ZHANG Bo, WANG Zhankai. Application of the OTSU method in image processing[J]. Radio Engineering of China, 2006, 36(7):25-26, 44. [26] 郭臻, 陈远知. 图像阈值分割算法研究[J]. 中国传媒大学学报(自然科学版), 2008, 15(2):77-82. GUO Zhen, CHEN Yuanzhi. Research of thresholding methods for image segmentation[J]. Journal of Communication University of China Science and Technology, 2008, 15(2):77-82. [27] XU Linlin, LI J, BRENNING A. A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery[J]. Remote Sensing of Environment, 2014, 141:14-23. [28] METZ C E. Basic principles of ROC analysis[J]. Seminars in Nuclear Medicine, 1978, 8(4):283-298. [29] STROBL C, BOULESTEIX A L, ZEILEIS A, et al. Bias in random forest variable importance measures:illustrations, sources and a solution[J]. BMC Bioinformatics, 2007, 8(1):25. [30] GONG Jianya. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):1-15. |