[1] GE Yun, TANG Yiling, JIANG Shunliang, et al. Region-based cascade pooling of convolutional features for HRRS image retrieval[J]. Remote Sensing Letters, 2018, 9(10):1002-1010. [2] SEBAI H, KOURGLI A, SERIR A. Dual-tree complex wavelet transform applied on color descriptors for remote-sensed images retrieval[J]. Journal of Applied Remote Sensing, 2015, 9(1):1-17. [3] 王新建, 罗光春, 秦科, 等. 一种基于SVM和主动学习的图像检索方法[J]. 计算机应用研究, 2016, 33(12):3836-3838, 3846. WANG Xinjian, LUO Guangchun, QIN Ke, et al. Image retrieval method based on SVM and active learning[J]. Application Research of Computers, 2016, 33(12):3836-3838, 3846. [4] 葛芸, 江顺亮, 叶发茂, 等. 视觉词袋和Gabor纹理融合的遥感图像检索[J]. 光电工程, 2016, 43(2):76-81, 88. GE Yun, JIANG Shunliang, YE Famao, et al. Remote sensing image retrieval based on the fusion of BoVW and Gabor texture[J]. Opto-Electronic Engineering, 2016, 43(2):76-81, 88. [5] ZHOU Weixun, SHAO Zhenfeng, DIAO Chunyuan, et al. High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder[J]. Remote Sensing Letters, 2015, 6(10):775-783. [6] BOSILJ P, APTOULA E, LEFōVRE S, et al. Retrieval of remote sensing images with pattern spectra descriptors[J]. ISPRS International Journal of Geo-Information, 2016, 5(12):228. DOI:10.3390/ijgi5120228. [7] 刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1):53-63. DOI:10.11947/j.AGCS.2019.20170578. LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):53-63. DOI:10.11947/j.AGCS.2019.20170578. [8] DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):101-110. [9] 董志鹏, 王密, 李德仁, 等. 遥感影像目标的尺度特征卷积神经网络识别法[J]. 测绘学报, 2019, 48(10):1285-1295. DOI:10.11947/j.AGCS.2019.20180393. DONG Zhipeng, WANG Mi, LI Deren, et al. Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1285-1295. DOI:10.11947/j.AGCS.2019.20180393. [10] FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):90-100. DOI:10.11947/j.JGGS.2019.0210. [11] YE Famao, XIAO Hui, ZHAO Xuqing, et al. Remote sensing image retrieval using convolutional neural network features and weighted distance[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10):1535-1539. [12] 彭晏飞, 宋晓男, 訾玲玲, 等. 基于卷积神经网络和改进模糊C均值的遥感图像检索[J]. 激光与光电子学进展, 2018, 55(9):167-176. PENG Yanfei, SONG Xiaonan, ZI Lingling, et al. Remote sensing image retrieval based on convolutional neural network and modified fuzzy C-means[J]. Laser & Optoelectronics Progress, 2018, 55(9):167-176. [13] ZHOU Weixun, NEWSAM S, LI Congmin, et al. Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval[J]. Remote Sensing, 2017, 9(5):489. [14] 叶发茂, 董萌, 罗威, 等. 基于卷积神经网络和重排序的农业遥感图像检索[J]. 农业工程学报, 2019, 35(15):138-145. YE Famao, DONG Meng, LUO Wei, et al. Agricultural remote sensing image retrieval based on convolutional neural network and Reranking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(15):138-145. [15] 张洪群, 刘雪莹, 杨森, 等. 深度学习的半监督遥感图像检索[J]. 遥感学报, 2017, 21(3):406-414. ZHANG Hongqun, LIU Xueying, YANG Sen, et al. Retrieval of remote sensing images based on semisupervised deep learning[J]. Journal of Remote Sensing, 2017, 21(3):406-414. [16] 李宇, 刘雪莹, 张洪群, 等. 基于卷积神经网络的光学遥感图像检索[J]. 光学精密工程, 2018, 26(1):200-207. LI Yu, LIU Xueying, ZHANG Hongqun et al. Optical remote sensing image retrieval based on convolutional neural networks[J]. Optics and Precision Engineering, 2018, 26(1):200-207. [17] YE Famao, ZHAO Xuqing, LUO Wei, et al. Query-adaptive remote sensing image retrieval based on image rank similarity and image-to-query class similarity[J]. IEEE Access, 2020, 8:116824-116839. [18] GE Yun, JIANG Shunliang, XU Qingyong, et al. Exploiting representations from pre-trained convolutional neural networks for high-resolution remote sensing image retrieval[J]. Multimedia Tools and Applications, 2018, 77(13):17489-17515. [19] YE Famao, LUO Wei, DONG Meng, et al. SAR image retrieval based on unsupervised domain adaptation and clustering[J]. IEEE Geoscience and Remote Sensing Letter, 2019, 16(9):1482-1486. [20] TONG Xinyi, XIA Guisong, HU Fan, et al. Exploiting deep features for remote sensing image retrieval:a systematic investigation[J]. IEEE Transactions on Big Data, 2020, 6(3):507-521. [21] CHAUDHURI B, DEMIR B, BRUZZONE L, et al. Region-based retrieval of remote sensing images using an unsupervised graph-theoretic approach[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7):987-991. [22] YE Famao, DONG Meng, LUO Wei, et al. A new re-ranking method based on convolutional neural network and two image-to-class distances for remote sensing image retrieval[J]. IEEE Access, 2019, 7:141498-141507. [23] 董萌. 基于卷积神经网络和蚁群算法的遥感图像检索研究[D]. 南昌:南昌大学, 2020. DONG Meng. Remote sensing image retrieval based on convolutional neural network and ant colony optimization algorithm[D]. Nanchang:Nanchang University, 2020. [24] DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41. [25] 张松灿, 普杰信, 司彦娜, 等. 蚁群算法在移动机器人路径规划中的应用综述[J]. 计算机工程与应用, 2020, 56(8):10-19. ZHANG Songcan, PU Jiexin, SI Yanna, et al. Survey on application of ant colony algorithm in path planning of mobile robot[J]. Computer Engineering and Applications, 2020, 56(8):10-19. [26] 张驰, 李姗姗, 史颜俊, 等. 蚁群-势场算法在水下重力辅助导航航迹规划中的应用[J]. 测绘学报, 2020, 49(7):865-873. DOI:10.11947/j.AGCS.2020.20190194. ZHANG Chi, LI Shanshan, SHI Yanjun, et al. Application of ant colony-potential field algorithm in underwater gravity matching navigation track planning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):865-873. DOI:10.11947/j.AGCS.2020.20190194. [27] RAVEENDRA K, VINOTHKANNA R. Hybrid ant colony optimization model for image retrieval using scale-invariant feature transform local descriptor[J]. Computers & Electrical Engineering, 2019, 74:281-291. [28] RASHNO A, SADRI S, SADEGHIANNEJAD H. An efficient content-based image retrieval with ant colony optimization feature selection schema based on wavelet and color features[C]//2015 The International Symposium on Artificial Intelligence and Signal Processing. Mashhad:IEEE, 2015. [29] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose, CA:ACM, 2010:270-279. [30] ZHOU Weixun, NEWSAM S, LI Congmin, et al. PatternNet:a benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145:197-209. [31] 葛芸, 马琳, 江顺亮, 等. 基于高层特征图组合及池化的高分辨率遥感图像检索[J]. 电子与信息学报, 2019, 41(10):2487-2494. GE Yun, MA Lin, JIANG Shunliang, et al. The combination and pooling based on high-level feature map for high-resolution remote sensing image retrieval[J]. Journal of Electronics and Information Technology, 2019, 41(10):2487-2494. |