Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (9): 1848-1861.doi: 10.11947/j.AGCS.2022.20220126
• Review • Previous Articles Next Articles
SUI Haigang1, LIU Chang1, GAN Zhe2, JIANG Zhengjie3, XU Chuan4
Received:
2022-02-24
Revised:
2022-07-24
Published:
2022-09-29
Supported by:
CLC Number:
SUI Haigang, LIU Chang, GAN Zhe, JIANG Zhengjie, XU Chuan. Overview of multi-modal remote sensing image matching methods[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1848-1861.
[1] 贾迪, 朱宁丹, 杨宁华, 等. 图像匹配方法研究综述[J]. 中国图象图形学报, 2019, 24(5):677-699. JIA Di, ZHU Ningdan, YANG Ninghua, et al. Image matching methods[J]. Journal of Image and Graphics, 2019, 24(5):677-699. [2] CHEN Lin, ROTTENSTEINER F, HEIPKE C. Feature detection and description for image matching:from hand-crafted design to deep learning[J]. Geo-Spatial Information Science, 2021, 24(1):58-74. [3] DAWN S, SAXENA V, SHARMA B. Remote sensing image registration techniques:a survey[C]//Proceedings of 2010 International Conference on Image and Signal Processing. Berlin,Germany:Springer, 2010:103-112. [4] 李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12):1211-1216. LI Deren, ZHANG Liangpei, XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12):1211-1216. [5] ZHANG Jixian. Multi-source remote sensing data fusion:status and trends[J]. International Journal of Image and Data Fusion, 2010, 1(1):5-24. [6] YANG Zhuoqian, DAN Tingting, YANG Yang. Multi-temporal remote sensing image registration using deep convolutional features[J]. IEEE Access, 2018, 6:38544-38555. [7] JIANG Xingyu, MA Jiayi, XIAO Guobao, et al. A review of multimodal image matching:methods and applications[J]. Information Fusion, 2021, 73:22-71. [8] ZHANG Xinyue, LENG Chengcai, HONG Yameng, et al. Multimodal remote sensing image registration methods and advancements:a survey[J]. Remote Sensing, 2021, 13(24):5128. [9] YAO Yongxiang, ZHANG Yongjun, WAN Yi, et al. Multi-modal remote sensing image matching considering Co-occurrence filter[J]. IEEE Transactions on Image Processing, 2022, 31:2584-2597. [10] XIE Xunwei, ZHANG Yongjun, LING Xiao, et al. A novel extended phase correlation algorithm based on Log-Gabor filtering for multimodal remote sensing image registration[J]. International Journal of Remote Sensing, 2019, 40(14):5429-5453. [11] YI K M, TRULLS E, LEPETIT V, et al. Lift:learned invariant feature transform[C]//Proceedings of 2016 European Conference on Computer Vision. Cham,Germany:Springer, 2016:467-483. [12] YE Yuanxin, YANG Chao, ZHANG Jiacheng, et al. Optical-to-SAR image matching using multiscale masked structure features[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [13] CHEN H M, ARORA M K, VARSHNEY P K. Mutual information-based image registration for remote sensing data[J]. International Journal of Remote Sensing, 2003, 24(18):3701-3706. [14] XIANG Yuming, TAO Rongshu, WAN Ling, et al. OS-PC:combining feature representation and 3D phase correlation for subpixel optical and SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9):6451-6466. [15] MA Jiayi, JIANG Xingyu, FAN Aoxiang, et al. Image matching from handcrafted to deep features:a survey[J]. International Journal of Computer Vision, 2021, 129(1):23-79. [16] ZITOVÁ B, FLUSSER J. Image registration methods:a survey[J]. Image and Vision Computing, 2003, 21(11):977-1000. [17] LENG Chengcai, ZHANG Hai, LI Bo, et al. Local feature descriptor for image matching:a survey[J]. IEEE Access, 2018,7:6424-6434. [18] YE Yuanxin, TANG Tengfeng, ZHU Bai, et al. A multiscale framework with unsupervised learning for remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. [19] GÓMEZ-CHOVA L, TUIA D, MOSER G, et al. Multimodal classification of remote sensing images:a review and future directions[J]. Proceedings of the IEEE, 2015, 103(9):1560-1584. [20] ARAR M, GINGER Y, DANON D, et al. Unsupervised multi-modal image registration via geometry preserving image-to-image translation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle, WA, USA:IEEE, 2020:13410-13419. [21] LIU Xiaoping, CHEN Shuli, ZHUO Li, et al. Multi-sensor image registration by combining local self-similarity matching and mutual information[J]. Frontiers of Earth Science, 2018, 12(4):779-790. [22] MA Wenping, WU Yue, LIU Shaodi, et al. Remote sensing image registration based on phase congruency feature detection and spatial constraint matching[J]. IEEE Access, 2018, 6:77554-77567. [23] ZENG Qiang, DU Jianhua, LIU Jiexin, et al. Real-time adaptive visible and infrared image registration based on morphological gradient and C_SIFT[J]. Journal of Real-Time Image Processing, 2020, 17(5):1103-1115. [24] ZHANG Wannan. Combination of SIFT and Canny edge detection for registration between SAR and optical images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [25] FAN Jianwei, WU Yan, LI Ming, et al. SAR and optical image registration using nonlinear diffusion and phase congruency structural descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5368-5379. [26] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999,1150-1157. [27] BAY H, TUYTELAARS T, GOOL L V. Surf:speeded up robust features[C]//Proceedings of 2006 European Conference on Computer Vision. Berlin,Germany:Springer, 2006:404-417. [28] WANG Shuang, QUAN Dou, LIANG Xuefeng, et al. A deep learning framework for remote sensing image registration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145:148-164. [29] XU Chuan, LIU Chang, LI Hongli, et al. Multiview image matching of optical satellite and UAV based on a joint description neural network[J]. Remote Sensing, 2022, 14(4):838. [30] ZENG Liang, DU Yanlei, LIN Huiping, et al. A novel region-based image registration method for multisource remote sensing images via CNN[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,14:1821-1831. [31] XIANG Yuming, WANG Feng, WAN Ling, et al. OS-flow:a robust algorithm for dense optical and SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6335-6354. [32] USS M L, VOZEL B, LUKIN V V, et al. Multimodal remote sensing image registration with accuracy estimation at local and global scales[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11):6587-6605. [33] 张祖勋. 新的核线相关算法:跨接法[J]. 武汉测绘科技大学学报, 1988, 13(4):19-27. ZHANG Zuxun. A new approach of epipolar-line image marching-bridging mode[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1988, 13(4):19-27. [34] EMERY W J, BALDWIN D, MATTHEWS D. Maximum cross correlation automatic satellite image navigation and attitude corrections for open-ocean image navigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1):33-42. [35] 陆和平, 高磊. 基于互相关的多源遥感图像匹配的改进算法[J]. 航天控制, 2009, 27(2):18-21, 25. LU Heping, GAO Lei. Improved algorithm for multi-source remote sensing images based on cross correlation[J]. Aerospace Control, 2009, 27(2):18-21, 25. [36] MAES F, COLLIGNON A, VANDERMEULEN D, et al. Multimodality image registration by maximization of mutual information[J]. IEEE Transactions on Medical Imaging, 1997, 16(2):187-198. [37] JOHNSON K, COLE-RHODES A, ZAVORIN I, et al. Mutual information as a similarity measure for remote sensing image registration[C]//Proceedings of 2001 Geo-spatial Image and Data Exploitation II. Orlando, FL,USA:SPIE, 2001, 4383:51-61. [38] LE MOIGNE J, CAMPBELL W J, CROMP R F. An automated parallel image registration technique based on the correlation of wavelet features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1849-1864. [39] LANCHANTIN P, PIECZYNSKI W.Unsupervised non stationary image segmentation using triplet Markov chains[C]//Proceedings of 2004 Advanced Concepts for Intelligent Vision Systems (ACVIS 04).[S.l.]:IEEE,2004. [40] 蔡潇. 基于相位特征的异源图像匹配算法[J]. 光学与光电技术, 2021, 19(1):48-53. CAI Xiao. Heterogeneous image matching algorithm based on phase feature[J]. Optics & Optoelectronic Technology, 2021, 19(1):48-53. [41] 王新生, 孙润德, 姚统. 基于相位一致性的遥感图像匹配方法[J]. 计算机应用, 2021, 41(S1):225-229. WANG Xinsheng, SUN Runde, YAO Tong. Remote sensing image matching algorithm based on phase congruency[J]. Journal of Computer Applications, 2021, 41(S1):225-229. [42] WONG A, ORCHARD J. Efficient FFT-accelerated approach to invariant optical-LiDAR registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3917-3925. [43] YE Yuanxin, SHAN Jie, BRUZZONE L, et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2941-2958. [44] YE Yuanxin, BRUZZONE L, SHAN Jie, et al. Fast and robust matching for multimodal remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9059-9070. [45] FAN Zhongli, ZHANG Li, LIU Yuxuan, et al. Exploiting high geopositioning accuracy of SAR data to obtain accurate geometric orientation of optical satellite images[J]. Remote Sensing, 2021, 13(17):3535. [46] MORAVEC H P. Techniques towards automatic visual obstacle avoidance[C]//Proceedings of 1997 International Joint Conference on Artificial Intelligence.[S.l.]:IEEE,1977:584. [47] HE Wei, DENG Xiaolian. A modified SUSAN corner detection algorithm based on adaptive gradient threshold for remote sensing image[C]//Proceedings of 2010 International Conference on Optoelectronics and Image Processing. Haikou, China:IEEE, 2010:40-43. [48] DURGAM U K, PAUL S, PATI U C. SURF based matching for SAR image registration[C]//Proceedings of 2016 IEEE Students's Conference on Electrical, Electronics and Computer Science. Bhopal, India:IEEE,2016:1-5. [49] FIRMENICHY D, BROWN M, SVSSTRUNK S. Multispectral interest points for RGB-NIR image registration[C]//Proceedings of the 18th IEEE International Conference on Image Processing. Brussels, Belgium:IEEE, 2011:181-184. [50] ZHENG Yi, ZHENG Ping. Image matching based on Harris-affine detectors and translation parameter estimation by phase correlation[C]//Proceedings of the 4th IEEE International Conference on Signal and Image Processing. Wuxi, China:IEEE,2019:106-111. [51] LIU Xiangzeng, AI Yunfeng, ZHANG Juli, et al. A novel affine and contrast invariant descriptor for infrared and visible image registration[J]. Remote Sensing, 2018, 10(4):658. [52] 刘妍,余淮,杨文, 等.利用SAR-FAST角点检测的合成孔径雷达图像配准方法[J].电子与信息学报,2017,39(2):430-436. LIU Yan, YU Huai, YANG Wen, et al. SAR image registration using SAR-FAST corner detection[J]. Journal of Electronics & Information Technology, 2017, 39(2):430-436. [53] RAN Li, LIN Luo, YU Zhang. Multiframe astronomical image registration based on block homography estimation[J]. Journal of Sensors, 2020, 2020:1-19. [54] 王峰, 尤红建, 傅兴玉. 应用于SAR图像配准的自适应SIFT特征均匀分布算法[J]. 武汉大学学报(信息科学版), 2015, 40(2):159-163. WANG Feng, YOU Hongjian, FU Xingyu. Auto-adaptive well-distributed scale-invariant feature for SAR images registration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2):159-163. [55] LI Yang, LIU Lingshan, WANG Lianghao, et al. Fast SIFT algorithm based on Sobel edge detector[C]//Proceedings of the 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). Yichang, China:IEEE,2012:1820-1823. [56] GUO Qing, HE Mengmeng, LI An. High-resolution remote-sensing image registration based on angle matching of edge point features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8):2881-2895. [57] YU Qiuze, ZHOU Shan, JIANG Yuxuan, et al. High-performance SAR image matching using improved SIFT framework based on rolling guidance filter and ROEWA-powered feature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(3):920-933. [58] FAN Zhongli, LIU Yuxian, LIU Yuxuan, et al. 3MRS:an effective coarse-to-fine matching method for multimodal remote sensing imagery[J]. Remote Sensing, 2022, 14(3):478. [59] 张雍吉, 范晋湘, 段连飞. 基于区域特征的光学图像与SAR图像配准算法[J]. 合肥学院学报(自然科学版), 2008, 18(4):37-40. ZHANG Yongji, FAN Jinxiang, DUAN Lianfei. Image registration algorithm for optical and SAR images based on image feature[J]. Journal of Hefei University (Natural Sciences Edition), 2008, 18(4):37-40. [60] 李雨谦, 皮亦鸣, 王金峰. 基于水平集的SAR图像与光学图像的配准[J]. 测绘学报, 2010, 39(3):276-282. LI Yuqian, PI Yiming, WANG Jinfeng. The registration between SAR and optical image based on level set[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(3):276-282. [61] 李晓明, 郑链, 胡占义. 基于SIFT特征的遥感影像自动配准[J]. 遥感学报, 2006, 10(6):885-892. LI Xiaoming, ZHENG Lian, HU Zhanyi. SIFT based automatic registration of remotely-sensed imagery[J]. Journal of Remote Sensing, 2006, 10(6):885-892. [62] MA Wenping, WEN Zelian, WU Yue, et al. Remote sensing image registration with modified SIFT and enhanced feature matching[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1):3-7. [63] XIANG Yuming, WANG Feng, YOU Hongjian. OS-SIFT:a robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):3078-3090. [64] LI Jiayuan, HU Qingwu, AI Mingyao. RIFT:multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing, 2020, 29:3296-3310. [65] 姚永祥,张永军,万一, 等.顾及各向异性加权力矩与绝对相位方向的异源影像匹配[J].武汉大学学报(信息科学版),2021,46(11):1727-1736. YAO Yongxiang, ZHANG Yongjun, WAN Yi, et al. Heterologous images matching considering anisotropic weighted moment and absolute phase orientation[J].Geomatics and Information Science of Wuhan University, 2021, 46(11):1727-1736. [66] 段汕, 王小凡, 张洪. 图像相似性度量方法的研究[J]. 中南民族大学学报(自然科学版), 2016, 35(4):121-125. DUAN Shan, WANG Xiaofan, ZHANG Hong. Research on method of similarity measure for images[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2016, 35(4):121-125. [67] YE Yuanxin, SHAN Jie, HAO Siyuan, et al. A local phase based invariant feature for remote sensing image matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142:205-221. [68] FAN Jianwei, WU Yan, LI Ming, et al. SAR and optical image registration using nonlinear diffusion and phase congruency structural descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5368-5379. [69] 李培, 姜刚, 马千里, 等. 结合张量与互信息的混合模型多模态图像配准方法[J]. 测绘学报, 2021, 50(7):916-929.DOI:10.11947/j.AGCS.2021.20200492. LI Pei, JIANG Gang, MA Qianli, et al. A hybrid model combining tensor and mutual information for multi-modal image registration[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):916-929.DOI:10.11947/j.AGCS.2021.20200492. [70] HU Han, ZHU Qing, DU Zhiqiang, et al. Reliable spatial relationship constrained feature point matching of oblique aerial images[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(1):49-58. [71] 肖雄武, 郭丙轩, 潘飞, 等. 利用泰勒展开的点特征子像素定位方法[J]. 武汉大学学报(信息科学版), 2014, 39(10):1231-1235. XIAO Xiongwu, GUO Bingxuan, PAN Fei, et al. Sub-pixel location of feature point based on Taylor expansion and its application[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10):1231-1235. [72] 闫利, 王紫琦, 叶志云. 顾及灰度和梯度信息的多模态影像配准算法[J]. 测绘学报, 2018, 47(1):71-81.DOI:10.11947/j.AGCS.2018.20170368. YAN Li, WANG Ziqi, YE Zhiyun. Multimodal image registration algorithm considering grayscale and gradient information[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):71-81.DOI:10.11947/j.AGCS.2018.20170368. [73] SUI Haigang, XU Chuan, LIU Junyi, et al. Automatic optical-to-SAR image registration by iterative line extraction and voronoi integrated spectral point matching[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11):6058-6072. [74] MA Wenping, LI Na, ZHU Hao, et al. A collaborative correlation-matching network for multimodality remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-18. [75] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报,2018,47(6):693-704. DOI:10.11947/j.AGCS.2018.20170640 GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. DOI:10.11947/j.AGCS.2018.20170640 [76] DUSMANU M, ROCCO I, PAJDLA T, et al. D2-net:a trainable CNN for joint description and detection of local features[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2019:8084-8093. [77] 蓝朝桢, 卢万杰, 于君明, 等. 异源遥感影像特征匹配的深度学习算法[J]. 测绘学报, 2021, 50(2):189-202.DOI:10.11947/j.AGCS.2021.20200048. LAN Chaozhen, LU Wanjie, YU Junming, et al. Deep learning algorithm for feature matching of cross modality remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):189-202.DOI:10.11947/j.AGCS.2021.20200048. [78] MA Wenping, ZHANG Jun, WU Yue, et al. A novel two-step registration method for remote sensing images based on deep and local features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4834-4843. [79] 南轲, 齐华, 叶沅鑫. 深度卷积特征表达的多模态遥感影像模板匹配方法[J]. 测绘学报, 2019, 48(6):727-736.DOI:10.11947/j.AGCS.2019.20180432. NAN Ke, QI Hua, YE Yuanxin. A template matching method of multimodal remote sensing images based on deep convolutional feature representation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):727-736.DOI:10.11947/j.AGCS.2019.20180432. [80] ZHANG Han, NI Weiping, YAN Weidong, et al. Registration of multimodal remote sensing image based on deep fully convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8):3028-3042. [81] LI Zeyi, ZHANG Haitao, HUANG Yihang. A rotation-invariant optical and SAR image registration algorithm based on deep and Gaussian features[J]. Remote Sensing, 2021, 13(13):2628. [82] USS M, VOZEL B, LUKIN V, et al. Exhaustive search of correspondences between multimodal remote sensing images using convolutional neural network[J]. Sensors, 2022, 22(3):1231. [83] SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue:learning feature matching with graph neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA:IEEE, 2020:4937-4946. [84] MA Jiayi, JIANG Xingyu, JIANG Junjun, et al. LMR:learning a two-class classifier for mismatch removal[J]. IEEE Transactions on Image Processing, 2019, 28(8):4045-4059. [85] HUGHES L H, MARCOS D, LOBRY S, et al. A deep learning framework for matching of SAR and optical imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169:166-179. [86] SUN Jiaming, SHEN Zehong, WANG Yuang, et al. LoFTR:detector-free local feature matching with transformers[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA:IEEE, 2021:8918-8927. [87] 余佩伦, 施佺, 王晗. 并行生成网络的红外-可见光图像转换[J]. 中国图象图形学报, 2021, 26(10):2346-2356. YU Peilun, SHI Quan, WANG Han. Infrared-to-visible image translation based on parallel generator network[J]. Journal of Image and Graphics, 2021, 26(10):2346-2356. [88] 尹梦晓, 林振峰, 杨锋. 基于动态感受野的自适应多尺度信息融合的图像转换[J]. 电子与信息学报, 2021, 43(8):2386-2394. YIN Mengxiao, LIN Zhenfeng, YANG Feng. Adaptive multi-scale information fusion based on dynamic receptive field for image-to-image translation[J]. Journal of Electronics & Information Technology, 2021, 43(8):2386-2394. [89] DU Wenliang, ZHOU Yong, ZHAO Jiaqi, et al. K-means clustering guided generative adversarial networks for SAR-optical image matching[J]. IEEE Access, 2020, 8:217554-217572. [90] 郭正胜, 李参海. 基于深度学习的遥感图像匹配方法[J]. 测绘与空间地理信息, 2019, 42(1):138-141, 146. GUO Zhengsheng, LI Canhai. Remote sensing image matching method based on depth learning[J]. Geomatics & Spatial Information Technology, 2019, 42(1):138-141, 146. [91] MA Jiayi, JIANG Junjun, ZHOU Huabing, et al. Guided locality preserving feature matching for remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4435-4447. [92] WANG G, CHEN Y. Robust feature matching using guided local outlier factor[J]. Pattern Recognition, 2021, 117(2):107986. [93] FISCHLER M A, BOLLES R C. Random sample consensus[J]. Communications of the ACM, 1981, 24(6):381-395. [94] WANG Gang, CHEN Yufei. Robust feature matching using guided local outlier factor[J]. Pattern Recognition, 2021, 117:107986. [95] MENG Fanyang, LI Xia, PEI Jihong. A feature point matching based on spatial order constraints bilateral-neighbor vote[J]. IEEE Transactions on Image Processing, 2015, 24(11):4160-4171. [96] MA Jiayi, MA Yong, ZHAO Ji, et al. Image feature matching via progressive vector field consensus[J]. IEEE Signal Processing Letters, 2015, 22(6):767-771. |
[1] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[2] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[3] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[4] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[5] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[6] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[7] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[8] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[9] | ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, JI Song, YU Ying, LAI Guangling. Progress and challenges of geospatial artificial intelligence [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146. |
[10] | AI Tinghua. Some thoughts on deep learning enabling cartography [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. |
[11] | GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi. Status analysis and research of sample database for intelligent interpretation of remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013-1022. |
[12] | YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1059-1067. |
[13] | TAO Chao, YIN Ziwei, ZHU Qing, LI Haifeng. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1122-1134. |
[14] | LI Pei, JIANG Gang, MA Qianli, XUE Wanfeng, YANG Weihua. A hybrid model combining tensor and mutual information for multi-modal image registration [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 916-929. |
[15] | YAN Xiongfeng, AI Tinghua, YANG Min, ZHENG Jianbin. Shape cognition in map space using deep auto-encoder learning [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 757-765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||