Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (10): 1985-2000.doi: 10.11947/j.AGCS.2022.20220299
ZHANG Qin, BAI Zhengwei, HUANG Guanwen, DU Yuan, WANG Duo
Received:2022-05-05
Revised:2022-07-01
Published:2022-11-05
Supported by:CLC Number:
ZHANG Qin, BAI Zhengwei, HUANG Guanwen, DU Yuan, WANG Duo. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1985-2000.
| [1] 霍东平, 张彬, 彭军还, 等. 滑坡变形监测技术研究现状与展望[J]. 工程勘察, 2015, 43(8): 62-67. HUO Dongping, ZHANG Bin, PENG Junhua, et al. Review and prospective of landslide deformation monitoring[J]. Geotechnical Investigation & Surveying, 2015, 43(8): 62-67. [2] HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194. [3] FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181. [4] CRED U. Human cost of disasters. an overview of the last 20 years: 2000—2019[M]. Geneva: UN Office for Disaster Risk Reduction,2020. [5] ZHANG Fanyu, PENG Jianbing, HUANG Xiaowei, et al. Hazard assessment and mitigation of non-seismically fatal landslides in China[J]. Natural Hazards, 2021, 106(1): 785-804. [6] ZHANG Fanyu, HUANG Xiaowei. Trend and spatiotemporal distribution of fatal landslides triggered by non-seismic effects in China[J]. Landslides, 2018, 15(8): 1663-1674. [7] 李劲峰. GPS应用于监测岩崩滑坡[J]. 长江流域资源与环境, 1996, 5(3): 284-288. LI Jinfeng. Application of GPS in the monitoring rockfalls and landslides[J]. Pesources and Enuironment in the Yangtza Valley, 1996, 5(3): 284-288. [8] MALET J P, MAQUAIRE O, CALAIS E. The use of global positioning system techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France)[J]. Geomorphology, 2002, 43(1/2): 33-54. [9] 王利, 张勤, 李寻昌, 等. GPS RTK技术用于滑坡动态实时变形监测的研究[J]. 工程地质学报, 2011, 19(2): 193-198. WANG Li, ZHANG Qin, LI Xunchang, et al. Dynamic and real time deformation monitoring of landslide with GPS-RTK technology[J]. Journal of Engineering Geology, 2011, 19(2): 193-198. [10] WEISS P. Welcome to the global navigation multi-constellation[J]. Engineering, 2021, 7(4): 421-423. [11] HAMZA V, STOPAR B, AMBROŽIČ T, et al. Testing multi-frequency low-cost GNSS receivers for geodetic monitoring purposes[J]. Sensors (Basel, Switzerland), 2020, 20(16): 4375. [12] 余加勇, 邵旭东, 晏班夫, 等. 基于全球导航卫星系统的桥梁健康监测方法研究进展[J]. 中国公路学报, 2016, 29(4): 30-41. YU Jiayong, SHAO Xudong, YAN Banfu, et al. Research and development on global navigation satellite system technology for bridge health monitoring[J]. China Journal of Highway and Transport, 2016, 29(4): 30-41. [13] 王利, 张勤, 赵超英,等. GPS一机多天线技术在公路边坡灾害监测中的应用研究[J].公路交通科技,2005,22(S1):163-166. WANG Li, ZHANG Qin, ZHAO Chaoying, et al. The application study of GPS multi-antenna monitoring technique in the monitoring of road slope disaster[J]. Journal of Highway and Transportation Research and Development, 2005,22(S1): 163-166. [14] HE Xiufeng, JIA Dongzhen, SANG Wengang. Monitoring steep slope movement at xiaowan dam with GPS multi-antenna method[J]. Survey Review, 2011, 43(323): 462-471. [15] XIAO Ruya, HE Xiufeng. Real-time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS[J]. Natural Hazards, 2013, 69(3): 1647-1660. [16] BIAGI L, GREC F C, NEGRETTI M. Low-cost GNSS receivers for local monitoring: experimental simulation, and analysis of displacements[J]. Sensors (Basel, Switzerland), 2016, 16(12): 2140. [17] BELLONE T, DABOVE P, MANZINO A M, et al. Real-time monitoring for fast deformations using GNSS low-cost receivers[J]. Geomatics, Natural Hazards and Risk, 2016, 7(2): 458-470. [18] ODOLINSKI R, TEUNISSEN P J G. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis[J]. Journal of Geodesy, 2016, 90(11): 1255-1278. [19] CINA A, PIRAS M. Performance of low-cost GNSS receiver for landslides monitoring: test and results[J]. Geomatics, Natural Hazards and Risk, 2015, 6(5/6/7): 497-514. [20] CALDERA S, REALINI E, BARZAGHI R, et al. Experimental study on low-cost satellite-based geodetic monitoring over short baselines[J]. Journal of Surveying Engineering, 2016, 142(3): 04015016. [21] BENOIT L, BRIOLE P, MARTIN O, et al. Monitoring landslide displacements with the geocube wireless network of low-cost GPS[J]. Engineering Geology, 2015, 195: 111-121. [22] NOTTI D, CINA A, MANZINO A, et al. Low-cost GNSS solution for continuous monitoring of slope instabilities applied to Madonna del Sasso sanctuary (NW Italy)[J]. Sensors (Basel, Switzerland), 2020, 20(1):289. [23] RODRIGUEZ J, DEANE E, HENDRY M T, et al. Practical evaluation of single-frequency dGNSS for monitoring slow-moving landslides[J]. Landslides, 2021, 18(11): 3671-3684. [24] HAMZA V, STOPAR B, AMBROŽIČ T, et al. Testing multi-frequency low-cost GNSS receivers for geodetic monitoring purposes[J]. Sensors (Basel, Switzerland), 2020, 20(16): 4375. [25] HAMZA V, STOPAR B, STERLE O. Testing the performance of multi-frequency low-cost GNSS receivers and antennas[J]. Sensors (Basel, Switzerland), 2021, 21(6): 2029. [26] WIELGOCKA N, HADAS T, KACZMAREK A, et al. Feasibility of using low-cost dual-frequency GNSS receivers for land surveying[J]. Sensors (Basel, Switzerland), 2021, 21(6): 1956. [27] 黄观文, 黄观武, 杜源, 等. 一种基于北斗云的低成本滑坡实时监测系统[J]. 工程地质学报, 2018, 26(4): 1008-1016. HUANG Guanwen, HUANG Guanwu, DU Yuan, et al. A lowcost real-time monitoring system for landslide deformaion with Beidou cloud[J]. Journal of Engineering Geology, 2018, 26(4): 1008-1016. [28] 白正伟, 张勤, 黄观文, 等. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429.DOI: 10.11947/j.AGCS.2019.20190167. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429.DOI: 10.11947/j.AGCS.2019.20190167. [29] 黄观文, 白正伟, 张勤, 等. 一种灾害监测型GNSS接收机及其监测方法: 中国,CN112596076A[P]. 2021-04-02. HUANG Guanwen, BAI Zhengwei, ZHANG Qin, et al. Disaster monitoring type GNSS receiver and monitoring method thereof: China, CN112596076A[P]. 2021-04-02. [30] RAWAT M S, JOSHI V, RAWAT B S, et al. Landslide movement monitoring using GPS technology: a case study of Bakthang landslide, Gangtok, East Sikkim, India[J].Journal of Development and Agricultural Economics, 2011, 3:194-200. [31] GILI J A, COROMINAS J, RIUS J. Using global positioning system techniques in landslide monitoring[J]. Engineering Geology, 2000, 55(3): 167-192. [32] 徐绍铨, 程温鸣, 黄学斌, 等. GPS用于三峡库区滑坡监测的研究[J].水利学报,2003,34(1): 114-118. XU Shaoquan, CHENG Wenming, HUANG Xuebin, et al. The investigation of the landslides monitoring in the Three Gorges Reservoir Region by applying GPS[J]. Journal of Hydraulic Engineering,2003,34(1): 114-118. [33] 过静珺,杨久龙,丁志刚,等. GPS在滑坡监测中的应用研究:以四川雅安峡口滑坡为例[J]. 地质力学学报,2004,10(1):65-70. GUO Jingjun, YANG Jiulong, DING Zhigang, et al. GPS application in landslide monitoring a case study of the Xiakou landslide Ya'an Sichuan[J]. Journal of Geomechanics, 2004,10(1):65-70. [34] 黄劲松,李征航. GPS快速静态定位技术[J]. 武测科技,1996(2):40-44. HUANG Jinsong, LI Zhenghang. GPS fast static positioning technology[J]. WTUSM Bulletin of Science and Technology, 1996(2):40-44. [35] CALCATERRA S, CESI C, MAIO C D, et al. Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in Southern Apennines, Italy[J]. Natural Hazards, 2012, 61(1): 257-266. [36] 亓星, 朱星, 修德皓, 等. 智能变频位移计在突发型黄土滑坡中的应用: 以甘肃黑方台黄土滑坡为例[J]. 水利水电技术, 2019, 50(5): 190-195. QI Xing, ZHU Xing, XIU Dehao, et al. Application of intelligent variable frequency displacement meter tosudden loess landslide: a case of Hiefangtai Loess Landslide[J]. Water Resources and Hydropower Engineering, 2019, 50(5): 190-195. [37] EYO E E, MUSA T A, OMAR K M, et al. Application of low-cost GPS tools and techniques for landslide monitoring: a review[J]. Jurnal Teknologi, 2014, 71(4): 71-78. [38] 韩静. BDS/GPS相对定位算法研究及其在滑坡监测中的应用[D]. 西安: 长安大学, 2017. HAN Jing. Research on BDS/GPS relative positioning algorithm and its application in landslide monitoring[D]. Xi'an: Changan University, 2017. [39] 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10): 1300-1307.DOI: 10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1300-1307.DOI: 10.11947/j.AGCS.2017.20170453. [40] ZHAO W Y, ZHANG M Z, MA J, et al. Application of CORS in landslide monitoring[J].IOP Conference Series: Earth and Environmental Science, 2021, 861(4): 042049. [41] RIZOS C, HAN S. Reference station network based RTK systems-concepts and progress[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2): 566-574. [42] APONTE J, MENG Xiaolin, HILL C, et al. Quality assessment of a network-based RTK GPS service in the UK[J]. Journal of Applied Geodesy, 2009, 3(1):25-34. [43] GÜMÜŞ K, SELBESOǦLU M O. Evaluation of NRTK GNSS positioning methods for displacement detection by a newly designed displacement monitoring system[J]. Measurement, 2019, 142: 131-137. [44] WANG Guoquan. GPS landslide monitoring: single base vs. network solutions:a case study based on the Puerto Rico and Virgin Islands Permanent GPS Network[J]. Journal of Geodetic Science, 2011, 1(3):191-203. [45] 张小红, 李星星, 李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报, 2017, 46(10): 1399-1407.DOI: 10.11947/j.AGCS.2017.20170327. ZHANG Xiaohong, LI Xingxing, LI Pan. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1399-1407.DOI: 10.11947/j.AGCS.2017.20170327. [46] 王利, 张勤, 黄观文, 等. GPS PPP技术用于滑坡监测的试验与结果分析[J]. 岩土力学, 2014, 35(7): 2118-2124. WANG Li, ZHANG Qin, HUANG Guanwen, et al. Experiment results and analysis of landslide monitoring by using GPS PPP technology[J]. Rock and Soil Mechanics, 2014, 35(7): 2118-2124. [47] LIN Chen, WU Guanye, FENG Xiaomin, et al. Application of multi-system combination precise point positioning in landslide monitoring[J]. Applied Sciences, 2021, 11(18): 8378. [48] MARTÍN A, ANQUELA A B, DIMAS-PAGÉS A, et al. Validation of performance of real-time kinematic PPP: a possible tool for deformation monitoring[J]. Measurement, 2015, 69: 95-108. [49] CAPILLA R M, BERNÉ J L, MARTÍN A, et al. Simulation case study of deformations and landslides using real-time GNSS precise point positioning technique[J]. Geomatics, Natural Hazards and Risk, 2016, 7(6): 1856-1873. [50] YIGIT C O, COSKUN M Z, YAVASOGLU H, et al. The potential of GPS precise point positioning method for point displacement monitoring: a case study[J]. Measurement, 2016, 91: 398-404. [51] 彭凤友, 聂桂根, 薛长虎, 等. GPS/BDS精密单点定位技术在滑坡变形监测中的应用研究[J]. 导航定位与授时, 2019, 6(6): 103-112. PENG Fengyou, NIE Guigen, XUE Changhu, et al. Application of GPS/BDS precise point positioning technology in landslide deformation monitoring[J]. Navigation Positioning and Timing, 2019, 6(6): 103-112. [52] WANG Guoquan. Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico[J]. Journal of Geodetic Science, 2013, 3(1): 22-31. [53] LI Xingxing, GE Maorong, DAI Xiaolei, et al. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo[J]. Journal of Geodesy, 2015, 89(6): 607-635. [54] SHEN Nan, CHEN Liang, LIU Jingbin, et al. A review of global navigation satellite system (GNSS)-based dynamic monitoring technologies for structural health monitoring[J]. Remote Sensing, 2019, 11(9): 1001. [55] HAN Junqiang, HUANG Guanwen, ZHANG Qin, et al. A new azimuth-dependent elevation weight (ADEW) model for real-time deformation monitoring in complex environment by multi-GNSS[J]. Sensors (Basel, Switzerland), 2018, 18(8): 2473-2489. [56] HAN Junqiang, TU Rui, ZHANG Rui, et al. SNR-dependent environmental model: application in real-time GNSS landslide monitoring[J]. Sensors (Basel, Switzerland), 2019, 19(22): 5017. [57] 刘健, 黄观文, 杜源, 等. 基于基准站信噪比先验信息的GNSS观测数据多路径误差识别方法及应用[J]. 地球科学与环境学报, 2022, 44(2): 352-362. LIU Jian, HUANG Guanwen, DU Yuan, et al. Method and application of identifying multipath errors in GNSS observation data based on prior information of base station's signal-to-noise ratio[J]. Journal of Earth Sciences and Environment, 2022,44(2):352-362. [58] 鄂栋臣, 詹必伟, 姜卫平, 等. 应用GAMIT/GLOBK软件进行高精度GPS数据处理[J]. 极地研究, 2005,17(3): 173-182. E Dongchen, ZHAN Biwei, JIANG Weiping, et al. High-precision GPS data processing by gamit/globk[J]. Chinese Journal of Polar Research, 2005,17(3): 173-182. [59] DU Yuan, HUANG Guanwen, ZHANG Qin, et al. Asynchronous RTK method for detecting the stability of the reference station in GNSS deformation monitoring[J]. Sensors (Basel, Switzerland), 2020, 20(5): 1320. [60] DU Yuan, HUANG Guanwen, ZHANG Qin, et al. A new asynchronous RTK method to mitigate base station observation outages[J]. Sensors (Basel, Switzerland), 2019, 19(15): 3376. [61] LI Lihua, KUHLMANN H. Deformation detection in the GPS real-time series by the multiple Kalman filters model[J]. Journal of Surveying Engineering, 2010, 136(4): 157-164. [62] SHARIFI S, HENDRY M T, MACCIOTTA R, et al. Evaluation of filtering methods for use on high-frequency measurements of landslide displacements[J]. Natural Hazards and Earth System Sciences, 2022, 22(2): 411-430. [63] HUANG Guanwen, WANG Duo, DU Yuan, et al. Deformation feature extraction for GNSS landslide monitoring series based on robust adaptive sliding-window algorithm[J]. Frontiers in Earth Science, 2022, 10: 884500. [64] RAGHEB A E, CLARKE P J, EDWARDS S J. GPS sidereal filtering: coordinate- and carrier-phase-level strategies[J]. Journal of Geodesy, 2007, 81(5): 325-335. [65] ZHONG Ping, DING Xiaoli, YUAN Linguo, et al. Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines[J]. Journal of Geodesy, 2010, 84(2): 145-158. [66] DONG D, WANG M, CHEN W, et al. Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map[J]. Journal of Geodesy, 2016, 90(3): 255-262. [67] ZHENG D W, ZHONG P, DING X L, et al. Filtering GPS time-series using a Vondrak filter and cross-validation[J]. Journal of Geodesy, 2005, 79(6): 363-369. [68] 韩军强, 黄观文, 李哲. 复杂环境下GNSS滑坡监测多路径效应分析及处理方法[J]. 地球科学与环境学报, 2018, 40(3): 355-362. HAN Junqiang, HUANG Guanwen, LI Zhe. Multipath effect analysis and processing method of GNSS landslide monitoring under complicated environment[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 355-362. [69] ZHONG P, DING X L, ZHENG D W, et al. Adaptive wavelet transform based on cross-validation method and its application to GPS multipath mitigation[J]. GPS Solutions, 2008, 12(2): 109-117. [70] SU Mingkun, ZHENG Jiansheng, YANG Yanxi, et al. A new multipath mitigation method based on adaptive thresholding wavelet denoising and double reference shift strategy[J]. GPS Solutions, 2018, 22(2): 40. [71] DAI Wujiao, HUANG Dawei, CAI Changsheng. Multipath mitigation via component analysis methods for GPS dynamic deformation monitoring[J]. GPS Solutions, 2014, 18(3): 417-428. [72] 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12): 1507-1522.DOI: 10.11947/j.AGCS.2019.20190446. CHEN Ruizhi, WANG Lei, LI Deren, et al. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1507-1522.DOI: 10.11947/j.AGCS.2019.20190446. [73] KOMAC M, HOLLEY R, MAHAPATRA P, et al. Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides[J]. Landslides, 2015, 12(2): 241-257. [74] ZHU Wu, ZHANG Qin, DING Xiaoli, et al. Landslide monitoring by combining of CR-InSAR and GPS techniques[J]. Advances in Space Research, 2014, 53(3): 430-439. [75] ZEYBEK M, ŞANLIOGLU , ÖZDEMIR A. Monitoring landslides with geophysical and geodetic observations[J]. Environmental Earth Sciences, 2015, 74(7): 6247-6263. [76] CHAN W S, XU Y L, DING X L, et al. An integrated GPS-accelerometer data processing technique for structural deformation monitoring[J]. Journal of Geodesy, 2006, 80(12): 705-719. [77] BOCK Y, MELGAR D, CROWELL B W. Real-time strong-motion broadband displacements from collocated GPS and accelerometers[J]. Bulletin of the Seismological Society of America, 2011, 101(6): 2904-2925. [78] TU Rui, GE Maorong, WANG Rongjiang, et al. A new algorithm for tight integration of real-time GPS and strong-motion records, demonstrated on simulated, experimental, and real seismic data[J]. Journal of Seismology, 2014, 18(1): 151-161. [79] TU Rui, LIU Jinhai, LU Cuixian, et al. Cooperating the BDS, GPS, GLONASS and strong-motion observations for real-time deformation monitoring[J]. Geophysical Journal International, 2017, 209(3): 1408-1417. [80] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374. XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374. [81] WU Shuangshuang, HU Xinli, ZHENG Wenbo, et al. Threshold definition for monitoring gapa landslide under large variations in reservoir level using GNSS[J]. Remote Sensing, 2021, 13(24): 4977. [82] DOK A, FUKUOKA H, KATSUMI T, et al. Tertiary creep reproduction in back-pressure-controlled ring shear test to understand the mechanism and final failure time of rainfall-induced landslides[J]. Annuals of Disaster Prevention Research Institute, Kyoto University, 2011, 54:263-270. [83] 徐峰, 汪洋, 杜娟, 等. 基于时间序列分析的滑坡位移预测模型研究[J]. 岩石力学与工程学报, 2011, 30(4): 746-751. XU Feng, WANG Yang, DU Juan, et al. Study of displacement prediction model of landslide based on time series analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 746-751. [84] 彭令, 牛瑞卿, 赵艳南, 等. 基于核主成分分析和粒子群优化支持向量机的滑坡位移预测[J]. 武汉大学学报(信息科学版), 2013, 38(2): 148-152, 161. PENG Ling, NIU Ruiqing, ZHAO Yannan, et al. Prediction of landslide displacement based on KPCA and PSO-SVR[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 148-152, 161. [85] HUANG Faming, HUANG Jinsong, JIANG Shuihua, et al. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine[J]. Engineering Geology, 2017, 218: 173-186. [86] YANG Beibei, YIN Kunlong, LACASSE S, et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16(4): 677-694. [87] HAN Heming, SHI Bin, ZHANG Lei. Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change[J]. Engineering Geology, 2021, 280: 105876. [88] 黄观文, 王家兴, 杜源, 等. 顾及降雨及库水位因素的滑坡时滞分析与预测: 以三峡库区新铺滑坡为例[J]. 地球科学与环境学报, 2021, 43(3): 621-631. HUANG Guanwen, WANG Jiaxing, DU Yuan, et al. Time-delay analysis and prediction of landslide considering precipitation and reservoir water level: a case study of Xinpu landslide in Three Gorges Reservoir Area, China[J]. Journal of Earth Sciences and Environment, 2021, 43(3): 621-631. [89] ZHANG Yonggang, TANG Jun, HE Zhengying, et al. A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide[J].Natural Hazards, 2021, 105(1): 783-813. [90] ZHANG Yonggang, TANG Jun, LIAO Raoping, et al. Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(6): 1273-1291. [91] ZHANG Yonggang, CHEN Xinquan, LIAO Raoping, et al. Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area[J]. Natural Hazards, 2021, 107(2): 1709-1729. [92] 殷坤龙. 滑坡灾害预测预报分类[J]. 中国地质灾害与防治学报, 2003, 14(4):12-18. YIN Kunlong. Classification of landslide hazard prediction and warning[J]. The Chinese Journal of Geological Hazard and Control, 2003,14(4):12-18. [93] INTRIERI E, CARLÀ T, GIGLI G. Forecasting the time of failure of landslides at slope-scale: a literature review[J]. Earth-Science Reviews, 2019, 193: 333-349. [94] SAITO M. Forecasting the time of occurrence of a slope failure[C]//Proceedings of 6th International Conference on Soil Mechanics and Foundation Engineering. [S.l.]: IEEE, 1965:537-541. [95] SAITO M. Forecasting time of slope failure by tertiary creep[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering.Mexico City, Mexico: [s.n.]: 1969. [96] FUKOZONO T. Recent studies on time prediction of slope failure [J].Landslide News,1990,(4):9-12. [97] MUFUNDIRWA A, FUJII Y, KODAMA J. A new practical method for prediction of geomechanical failure-time[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1079-1090. [98] 胡华, 谢金华. 以速率为参量的GM(1,1)滑坡时间预报模型研究[J]. 长江科学院院报, 2018, 35(10):70-76,87. HU Hua, XIE Jinhua. GM(1,1) model of landslide time prediction based on velocity parameters[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(10):70-76,87. [99] 亓星, 朱星, 许强, 等. 基于斋藤模型的滑坡临滑时间预报方法改进及应用[J]. 工程地质学报, 2020, 28(4): 832-839. QI Xing, ZHU Xing, XU Qiang, et al. Improvement and application of landslide proximity time prediction method based on saito model[J]. Journal of Engineering Geology, 2020, 28(4): 832-839. [100] ZHANG J, WANG Z P, ZHANG G D, et al. Probabilistic prediction of slope failure time[J]. Engineering Geology, 2020, 271: 105586. [101] ZHOU Xiaoping, LIU Linjiang, XU Ce. A modified inverse-velocity method for predicting the failure time of landslides[J]. Engineering Geology, 2020, 268: 105521. [102] FEDERICO A, POPESCU M, ELIA G, et al. Prediction of time to slope failure: a general framework[J]. Environmental Earth Sciences, 2012, 66(1): 245-256. [103] 许强, 黄润秋, 李秀珍. 滑坡时间预测预报研究进展[J]. 地球科学进展, 2004,19(3): 478-483. XU Qiang, HUANG Runqiu, LI Xiuzhen. Research progress in time forecast and prediction of landslides[J]. Advance in Earth Sciences, 2004,19(3): 478-483. [104] 唐亚明, 张茂省, 薛强, 等. 滑坡监测预警国内外研究现状及评述[J]. 地质论评, 2012, 58(3): 533-541. TANG Yaming, ZHANG Maosheng, XUE Qiang, et al. Landslide monitoring and early-warning: an overview[J]. Geological Review, 2012, 58(3): 533-541. [105] LEE Huangchen, KE K H, FANG Yaomin, et al. Open-source wireless sensor system for long-term monitoring of slope movement[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(4): 767-776. [106] 殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 2017, 44(5): 827-841. YIN Yueping, WANG Wenpei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian county, Sichuan province[J]. Geology in China, 2017, 44(5): 827-841. [107] SHEN Nan, CHEN Liang, WANG Lei, et al. Short-term landslide displacement detection based on GNSS real-time kinematic positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. [108] 张勤,白正伟,黄观文,等. 一种远程部署的地质灾害监测装置及其监测方法:中国, CN112305564A[P].2021-02-02. ZHANG Qin, BAI Zhengwei, HUANG Guanwen, et al. A geological hazard monitoring equipment deployed by UAV remotely and its monitoring method: China,CN112305564A[P].2021-02-02. [109] CINA A, MANZINO A M, BENDEA I H. Improving GNSS landslide monitoring with the use of low-cost MEMS accelerometers[J]. Applied Sciences, 2019, 9(23): 5075. [110] 张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087.DOI: 10.11947/j.AGCS.2019.20190176. ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087.DOI: 10.11947/j.AGCS.2019.20190176. [111] LI Xingxing, MA Fujian, LI Xin, et al. LEO constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of Geodesy, 2019, 93(5): 749-764. [112] HASTAOGLU K O, SANLI D U. Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities[J]. Natural Hazards, 2011, 58(3): 1275-1294. [113] GUZZETTI F, GARIANO S L, PERUCCACCI S, et al. Geographical landslide early warning systems[J]. Earth-Science Reviews, 2020, 200: 102973. |
| [1] | Wei QU, Rongtang XU, Jiuyuan LI, Xingyou TANG, Peinan CHEN. Singular value decomposition normalization prediction method for non-steady landslide displacement [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1647-1663. |
| [2] | Feifei TANG, Junzhe ZHOU, Changhan WANG, Jianyun WANG, Yutao ZHOU, Yafei HAO. Quantitative analysis method for the time lag effect of rainfall-reservoir water level-landslide deformation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1687-1696. |
| [3] | Yarong LUO, Wentao LU, Chi GUO, Jingnan LIU. Left-handed symmetry equivariant filtering model and algorithm for GNSS/INS integrated navigation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1389-1403. |
| [4] | Yangyi CHEN, Kai ZHENG, Xiaohong ZHANG, Mingkui WU, Pengxu WANG, Wenju FU, Kezhong LIU. GPS/Galileo/BDS overlapping frequencies multipath error analysis and modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1427-1438. |
| [5] | Jianzhang LI, Haowen YAN, Weifang YANG, Xiaoning SU. GNSS pseudo trigonometric leveling method [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1170-1177. |
| [6] | Qingzhi ZHAO, Lulu CHANG, Yibin YAO, Haojie LI. A method for constructing a hydrological drought index integrated with GNSS and meteorological data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1192-1205. |
| [7] | Qianxin WANG, Chao HU, Tong CHENG. A method for satellite ultra-rapid orbit and clock offset estimation based on the prior information of the GNSS clock parameters [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 982-994. |
| [8] | Yang SHEN, Guangyun LI, Mingjian CHEN, Linyang LI, Xingyu SHI, Wei CAI, Weifeng HAO. Assessment of GNSS ionosphere models based on FY-3 TEC in polar regions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 995-1008. |
| [9] | Shunqiang HU, Kejie CHEN, Xiaoxing HE, Hai ZHU, Tan WANG. The impact of environmental loading on nonlinear variations of 3D coordinate time series of GNSS stations in Sichuan and Yunnan region [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 805-818. |
| [10] | Wentao YANG, Fei GUO, Xiaohong ZHANG, Zhiyu ZHANG, Yifan ZHU, Zheng LI, Ziheng WU. Soil moisture and freeze-thaw map using GNSS reflectometer and SMAP radiometer for Qinghai-Xizang Plateau [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 725-735. |
| [11] | Qingzhi ZHAO, Duoduo JIANG, Hongwu GUO, Zufeng LI, Chen LIU, Yibin YAO. A general method for determining the key parameters of GNSS water vapor tomography modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 410-421. |
| [12] | Xuexi LIU, Shouqing ZHU, Guo CHEN, Kefei ZHANG, Nanshan ZHENG, Jingxuan LIU. Consistency analysis of GNSS precise orbit and clock products based on globally unified coordinate frame [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 432-447. |
| [13] | Yangyang LU, Huizhong ZHU, Bo LI, Jun LI, Aigong XU. PPP algorithm for multi-frequency GPS/Galileo/BDS-3 with IFCB time-varying characteristic constraints [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 233-247. |
| [14] | Jixing ZHU, Shuqiang XUE, Baojin LI, Zhen XIAO, Kaiming WANG. GNSS-acoustic inversion of double-exponential temperature profile [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 286-296. |
| [15] | Yating LIU, Chuanfa CHEN, Qingxin HE, Kunyu LI. Landslide susceptibility evaluation considering positive and negative sample optimization [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 308-320. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||