[1] KATTENBORN T, LEITLOFF J, SCHIEFER F, et al. Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 24-49. [2] LI Yansheng, MA Jiayi, ZHANG Yongjun. Image retrieval from remote sensing big data: a survey[J]. Information Fusion, 2021, 67: 94-115. [3] 李敏, 朱国康, 张学武, 等. 基于多孔径映射的高光谱异常检测算法[J]. 测绘学报, 2016, 45(10): 1222-1230.DOI: 10.11947/j.AGCS.2016.20160119. LI Min, ZHU Guokang, ZHANG Xuewu, et al. An anomaly detector based on multi-aperture mapping for hyperspectral data[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1222-1230.DOI: 10.11947/j.AGCS.2016.20160119. [4] 黄远程, 薛园园, 李朋飞. 高光谱影像子空间分析孤立森林异常目标探测方法[J]. 测绘学报, 2021, 50(3): 416-425.DOI: 10.11947/j.AGCS.2021.20200036. HUANG Yuancheng, XUE Yuanyuan, LI Pengfei. Subspace analysis isolation forest for hyperspectral anomaly detection[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 416-425.DOI: 10.11947/j.AGCS.2021.20200036. [5] REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10): 1760-1770. [6] CHEN J Y, REED I S. A detection algorithm for optical targets in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23(1): 46-59. [7] SCHAUM A. Joint subspace detection of hyperspectral targets[C]//Proceedings of 2004 IEEE Aerospace Conference. Big Sky: IEEE, 2004. [8] KWON H, NASRABADI N M. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 388-397. [9] WANG Kaidong, WANG Yao, ZHAO Xile, et al. Hyperspectral and multispectral image fusion via nonlocal low-rank tensor decomposition and spectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 7654-7671. [10] LI Wei, DU Qian. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1463-1474. [11] SUN Weiwei, LIU Chun, LI Jialin, et al. Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083641. [12] XU Yang, WU Zebin, LI Jun, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1990-2000. [13] QU Ying, WANG Wei, GUO Rui, et al. Hyperspectral anomaly detection through spectral unmixing and dictionary-based low-rank decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4391-4405. [14] LEE H, KWON H. Going deeper with contextual CNN for hyperspectral image classification [J]. IEEE Transactions on Image Processing, 2017, 26(10): 4843-4855. [15] MEI Shaohui, YUAN Xin, JI Jingyu, et al. Hyperspectral image spatial super-resolution via 3D full convolutional neural network[J]. Remote Sensing, 2017, 9(11): 1139. [16] 蓝朝桢, 卢万杰, 于君明, 等. 异源遥感影像特征匹配的深度学习算法[J]. 测绘学报, 2021, 50(2): 189-202.DOI: 10.11947/j.AGCS.2021.20200048. LAN Chaozhen, LU Wanjie, YU Junming, et al. Deep learning algorithm for feature matching of cross modality remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 189-202.DOI: 10.11947/j.AGCS.2021.20200048. [17] ZHANG Xiangrong, SUN Yujia, ZHANG Jingyan, et al. Hyperspectral unmixing via deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1755-1759. [18] QIAN Yinlong, DONG Jing, WANG Wei, et al. Learning and transferring representations for image steganalysis using convolutional neural network[C]//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix: IEEE, 2016: 2752-2756. [19] SHI Yanzi, LEI Jie, YIN Yaping, et al. Discriminative feature learning with distance constrained stacked sparse autoencoder for hyperspectral target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1462-1466. [20] ZHAO Chunhui, LI Chuang, FENG Shou, et al. Spectral-spatial anomaly detection via collaborative representation constraint stacked autoencoders for hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [21] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. [22] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Hong Kong: IEEE, 2006: 153-160. [23] REN X, LIN Z. Linearized alternating direction method with adaptive penalty and warm starts for fast solving transform invariant low-rank textures[J]. International journal of computer vision, 2013, 104: 1-14. [24] CANDAN C, KUTAY M A, OZAKTAS H M. The discrete fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1329-1337. [25] TAO Ran, ZHAO Xudong, LI Wei, et al. Hyperspectral anomaly detection by fractional Fourier entropy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 4920-4929. [26] WANG Shuihua, ZHANG Yudong, YANG Xiaojun, et al. Pathological brain detection by a novel image feature—fractional Fourier entropy[J]. Entropy, 2015, 17(12): 8278-8296. [27] SNYDER D, KEREKES J, FAIRWEATHER I, et al. Development of a web-based application to evaluate target finding algorithms[C]//Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium.Boston: IEEE, 2009: II-915. [28] STEFANOU M S, KEREKES J P. A method for assessing spectral image utility[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1698-1706. [29] KEREKES J. Receiver operating characteristic curve confidence intervals and regions[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 251-255. |