[1] 魏立飞, 余铭, 钟燕飞, 等. 空-谱融合的条件随机场高光谱影像分类方法[J]. 测绘学报, 2020, 49(3):343-354. DOI:10.11947/j.AGCS.2020.20190042. WEI Lifei, YU Ming, ZHONG Yanfei, et al. Hyperspectral image classification method based on space-spectral fusion conditional random field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):343-354. DOI:10.11947/j.AGCS.2020.20190042. [2] 万佳明. 光谱遥感技术在找矿中的应用[J]. 矿业装备, 2013(8):88-90. WAN Jiaming. Application of spectral remote sensing technology in ore prospecting[J]. Mining Equipment, 2013(8):88-90. [3] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1778-1790. [4] LI Wei, CHEN Chen, SU Hongjun, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3681-3693. [5] IMMITZER M, ATZBERGER C, KOUKAL T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(9):2661-2693. [6] 王毓乾. 基于空间-光谱分析的高光谱遥感影像稀疏解混研究[J]. 测绘学报, 2017, 46(8):1072.DOI:10.11947/j.AGCS.2017.20170167. WANG Yuqian. Hyperspectral imagery sparse unmixing based on spatial and spectral analysis[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):1072.DOI:10.11947/j.AGCS.2017.20170167. [7] LI Jun, MARPU P R, PLAZA A, et al. Generalized composite kernel framework for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9):4816-4829. [8] TARABALKA Y, FAUVEL M, CHANUSSOT J, et al. SVM- and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4):736-740. [9] 黄鸿, 陈美利, 王丽华, 等. 空-谱协同正则化稀疏超图嵌入的高光谱图像分类[J]. 测绘学报, 2019, 48(6):676-687.DOI:10.11947/j.AGCS.2019.20180469. HUANG Hong, CHEN Meili, WANG Lihua, et al. Using spatial-spectral regularized hypergraph embedding for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):676-687.DOI:10.11947/j.AGCS.2019.20180469. [10] ZHANG Mengmeng, LI Wei, ZHANG Yuxiang, et al. Hyperspectral and LiDAR data classification based on sturctural optimization transmission[J]. IEEE Transactions on Cybemetics, 2023, 53(5):3153-3169. [11] LI Wei, WU Guodong, ZHANG Fan, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):844-853. [12] MEI Shaohui, JI Jingyu, HOU Junhui, et al. Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4520-4533. [13] LEE H, KWON H. Going deeper with contextual CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2017, 26(10):4843-4855. [14] ZHANG Mengmeng, LI Wei, DU Qian. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2018, 27(6):2623-2634. [15] WU Hao, PRASAD S. Convolutional recurrent neural networks for hyperspectral data classification[J]. Remote Sensing, 2017, 9(3):298. [16] ZHU Lin, CHEN Yushi, GHAMISI P, et al. Generative adversarial networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5046-5063. [17] HONG Danfeng, HAN Zhu, YAO Jing, et al. Spectralformer:rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. [18] PESARESI M, BENEDIKTSSON J A. A new approach for the morphological segmentation of high-resolution satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2):309-320. [19] DALLA MURA M, BENEDIKTSSON J A, WASKE B, et al. Morphological attribute profiles for the analysis of very high resolution images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10):3747-3762. [20] MONDAL R, PURKAIT P, SANTRA S, et al. Morphological networks for image deraining[C]//Proceedings of 2019 International Conference on Discrete Geometry for Computer Imagery. Cham:Springer, 2019. 262-275. [21] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL].(2014-01-30)[2022-08-10].https://arxiv.org/abs/1412.6980. [22] ZHANG Mengmeng, LI Wei, TAO Ran, et al. Information fusion for classification of hyperspectral and LiDAR data using IP-CNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5506812. [23] ZHU Yixuan, LI Wei, ZHANG Mengmeng, et al. Joint feature extraction for multi-source data using similar double-concentrated network[J]. Neurocomputing, 2021, 450:70-79. [24] GLOROT X, BORDES A, BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.[S.l.]:IEEE, 2011:315-323. [25] MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium.Milan:IEEE, 2015:4959-4962. |