Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (7): 1444-1457.doi: 10.11947/j.AGCS.2024.20230056
• Cartography and Geoinformation • Previous Articles Next Articles
Jichong YIN(), Fang WU(), Renjian ZHAI, Yue QIU, Xianyong GONG, Ruixing XING
Received:
2023-03-20
Published:
2024-08-12
Contact:
Fang WU
E-mail:jichongy@whu.edu.cn;wufang_630@126.com
About author:
YIN Jichong (1997—), male, PhD candidate, majors in intelligent processing of geospatial data. E-mail: jichongy@whu.edu.cn
Supported by:
CLC Number:
Jichong YIN, Fang WU, Renjian ZHAI, Yue QIU, Xianyong GONG, Ruixing XING. Two-stream boundary constraints and relativistic generation adversarial network for building contour regularization[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1444-1457.
Accuracy evaluation results of WHU aerial image building dataset"
方法 | Recall/(%) | Precision/(%) | F1值/(%) | IoU/(%) | Mr/(%) | Ecur | Eshp |
---|---|---|---|---|---|---|---|
分割掩膜 | 94.06 | 93.50 | 93.78 | 88.29 | 84.47 | 5.34 | 4.85 |
方法① | 91.42 | 94.23 | 93.25 | 87.43 | 83.04 | 2.63 | 5.23 |
方法② | 93.47 | 94.30 | 93.21 | 87.58 | 84.34 | 3.25 | 3.43 |
方法③ | 93.64 | 94.47 | 93.56 | 87.97 | 84.13 | 3.72 | 3.51 |
本文方法 | 93.79 | 94.72 | 94.01 | 88.77 | 85.32 | 3.17 | 2.79 |
Tab.3
Accuracy evaluation results of Inria aerial image labeling dataset"
方法 | Recall/(%) | Precision/(%) | F1值/(%) | IoU/(%) | Mr/(%) | Ecur | Eshp |
---|---|---|---|---|---|---|---|
分割掩膜 | 89.09 | 88.77 | 88.93 | 80.06 | 63.76 | 7.65 | 6.45 |
方法① | 89.17 | 87.89 | 88.53 | 77.41 | 63.25 | 3.27 | 6.87 |
方法② | 89.53 | 89.51 | 89.52 | 81.03 | 64.46 | 5.34 | 3.84 |
方法③ | 88.47 | 88.16 | 88.32 | 79.09 | 64.18 | 4.86 | 4.66 |
本文方法 | 90.13 | 90.11 | 90.12 | 82.01 | 65.53 | 3.46 | 3.23 |
[1] | 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6):693-704. DOI: 10.11947/j.AGCS.2018.20170640. |
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. DOI: 10.11947/j.AGCS.2018.20170640. | |
[2] | 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12):1788-1796. |
GONG Jianya. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1788-1796. | |
[3] | ALSHEHHI R, MARPU P R, WOON W L, et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:139-149. |
[4] | DORNAIKA F, MOUJAHID A, EL MERABET Y, et al. Building detection from orthophotos using a machine learning approach: an empirical study on image segmentation and descriptors[J]. Expert Systems with Applications, 2016, 58:130-142. |
[5] | CHEN Z, LI S, XU Y, et al. Correg-YOLOV3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2):51-61. |
[6] | JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586. |
[7] | 张玉鑫, 颜青松, 邓非. 高分辨率遥感影像建筑物提取多路径RSU网络法[J]. 测绘学报, 2022, 51(1):135-144. DOI: 10.11947/j.AGCS.2021.20200508. |
ZHANG Yuxin, YAN Qingsong, DENG Fei. Multi-path RSU network method for high-resolution remote sensing image building extraction[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1):135-144. DOI: 10.11947/j.AGCS.2021.20200508. | |
[8] | 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459. DOI: 10.11947/j.AGCS.2019.20180206. |
JI Shunping, WEI Shiqing. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459. DOI: 10.11947/j.AGCS.2019.20180206. | |
[9] | YUAN Jiangye. Learning building extraction in aerial scenes with convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11):2793-2798. |
[10] | MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):645-657. |
[11] | KANG Wenchao, XIANG Yuming, WANG Feng, et al. EU-net: an efficient fully convolutional network for building extraction from optical remote sensing images[J]. Remote Sensing, 2019, 11(23):2813. |
[12] | 何直蒙, 丁海勇, 安炳琪. 高分辨率遥感影像建筑物提取的空洞卷积E-Unet算法[J]. 测绘学报, 2022, 51(3):457-467. DOI: 10.11947/j.AGCS.2022.20200601. |
HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3):457-467. DOI: 10.11947/j.AGCS.2022.20200601. | |
[13] | QIU Yue, WU Fang, QIAN Haizhong, et al. AFL-net: attentional feature learning network for building extraction from remote sensing images[J]. Remote Sensing, 2022, 15(1):95. |
[14] | CHEN J, LI Z, LI S, et al. From digitalized to intelligentized surveying and mapping: fundamental issues and research agenda[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):148-160. |
[15] | ZHENG X, HUAN L, XIA G S, et al. Parsing very high-resolution urban scene images by learning deep ConvNets with edge-aware loss[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170:15-28. |
[16] | YIN Jichong, WU Fang, QIU Yue, et al. A multiscale and multitask deep learning framework for automatic building extraction[J]. Remote Sensing, 2022, 14(19):4744. |
[17] | GUO Haonan, DU Bo, ZHANG Liangpei, et al. A coarse-to-fine boundary refinement network for building footprint extraction from remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183:240-252. |
[18] | LI Qingyu, SHI Yilei, HUANG Xin, et al. Building footprint generation by integrating convolution neural network with feature pairwise conditional random field (FPCRF)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11):7502-7519. |
[19] | ZHAO K, KANG J, JUNG J, et al. Building extraction from satellite images using mask R-CNN with building boundary regularization[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 247-251. |
[20] | HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):386-397. |
[21] | WEN Qi, JIANG Kaiyu, WANG Wei, et al. Automatic building extraction from google earth images under complex backgrounds based on deep instance segmentation network[J]. Sensors, 2019, 19(2):333. |
[22] | 朱盼盼, 李帅朋, 张立强, 等. 基于多任务学习的高分辨率遥感影像建筑提取[J]. 地球信息科学学报, 2021, 23(3):514-523. |
ZHU Panpan, LI Shuaipeng, ZHANG Liqiang, et al. Multitask learning-based building extraction from high-resolution remote sensing images[J]. Journal of Geo-Information Science, 2021, 23(3):514-523. | |
[23] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
[24] | DING Lei, TANG Hao, LIU Yahui, et al. Adversarial shape learning for building extraction in VHR remote sensing images[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2022, 31:678-690. |
[25] | GUO Haonan, SHI Qian, MARINONI A, et al. Deep building footprint update network: a semi-supervised method for updating existing building footprint from bi-temporal remote sensing images[J]. Remote Sensing of Environment, 2021, 264:112589. |
[26] | WANG Zhenqing, ZHOU Yi, WANG Futao, et al. A multi-scale edge constraint network for the fine extraction of buildings from remote sensing images[J]. Remote Sensing, 2023, 15(4):927. |
[27] | DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1973, 10(2):112-122. |
[28] | TASAR O, MAGGIORI E, ALLIEZ P, et al. Polygonization of binary classification maps using mesh approximation with right angle regularity[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 6404-6407. |
[29] | MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Polygonization of remote sensing classification maps by mesh approximation[C]//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 560-564. |
[30] | GIRARD N, TARABALKA Y. End-to-end learning of polygons for remote sensing image classification[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 2083-2086. |
[31] | WEI Shiqing, JI Shunping, LU Meng. Toward automatic building footprint delineation from aerial images using CNN and regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):2178-2189. |
[32] | ZORZI S, FRAUNDORFER F. Regularization of building boundaries in satellite images using adversarial and regularized losses[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 5140-5143. |
[33] | LI M, LAFARGE F, MARLET R. Approximating shapes in images with low-complexity polygons[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8630-8638. |
[34] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing System. Cambridge: MIT Press, 2014: 2672-2680. |
[35] | LIU Q, MENG X, SHAO F, et al. PSTAF-GAN: progressive spatio-temporal attention fusion method based on generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5408513. |
[36] | BENZENATI T, KESSENTINI Y, KALLEL A. Pansharpening approach via two-stream detail injection based on relativistic generative adversarial networks[J]. Expert Systems with Applications, 2022, 188:115996. |
[37] | TANG Meng, PERAZZI F, DJELOUAH A, et al. On regularized losses for weakly-supervised CNN segmentation[C]//Proceedings of 2018 European Conference on Computer Vision. Munich: Springer, 2018: 507-522. |
[38] | TANG Meng, DJELOUAH A, PERAZZI F, et al. Normalized cut loss for weakly-supervised CNN segmentation[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1818-1827. |
[39] | CHEN Zhao, BADRINARAYANAN V, LEE Chenyu, et al. GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm: PMLR, 2018: 794-803. |
[40] | MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Can semantic labeling methods generalize to any city?The Inria aerial image labeling benchmark[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth: IEEE, 2017: 3226-3229. |
[41] | XIE Yakun, ZHU Jun, CAO Yungang, et al. Refined extraction of building outlines from high-resolution remote sensing imagery based on a multifeature convolutional neural network and morphological filtering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1842-1855. |
[42] | YE Su, PONTIUS R G J, RAKSHIT R. A review of accuracy assessment for object-based image analysis: from per-pixel to per-polygon approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 141:137-147. |
[43] | PERSELLO C, BRUZZONE L. A novel protocol for accuracy assessment in classification of very high resolution images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3):1232-1244. |
[44] | LIZARAZO I. Accuracy assessment of object-based image classification: another STEP[J]. International Journal of Remote Sensing, 2014, 35(16):6135-6156. |
[1] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[2] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
[3] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
[4] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[5] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
[6] | GU Xiaohu, LI Zhengjun, MIAO Jianhao, LI Xinghua, SHEN Huanfeng. Dual-channel parallel hybrid convolutional neural networks based classification method for high-resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 798-807. |
[7] | HU Minghong, LI Jiatian, YAO Yanji, A Xiaohui, LU Mei, LI Wen. SER-UNet algorithm for building extraction from high-resolution remote sensing image combined with multipath [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 808-817. |
[8] | LIU Shuai, LI Xiaoying, YU Meng, XING Guanglong. Dual decoupling semantic segmentation model for high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 638-647. |
[9] | HU Anna, LIU Rui, WU Liang, ZHANG Jin, XU Yongyang, CHEN Siqiong. Super-resolution reconstruction method for remote sensing images considering global features and texture features [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 648-659. |
[10] | JIANG Ming, ZHANG Xinchang, SUN Ying, FENG Weiming, RUAN Yongjian. Full-scale feature aggregation network for high-resolution remote sensing image change detection [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1738-1748. |
[11] | ZHANG Guangbin, GAO Xianjun, RAN Shuhao, YANG Yuanwei, LI Lishan, ZHANG Yan. Accurate and lightweight cloud detection method based on cloud and snow coexistence region of high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 93-107. |
[12] | GE Xiaosan, CHEN Xi, ZHAO Wenzhi, LI Ruixiang. Detection of damaged buildings based on generative adversarial networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 238-247. |
[13] | ZHANG Yuxin, YAN Qingsong, DENG Fei. Multi-path RSU network method for high-resolution remote sensing image building extraction [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 135-144. |
[14] | ZHANG Tao, DING Lele, SHI Furong. Urban villages extraction from high-resolution remote sensing imagery based on landscape semantic metrics [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 97-104. |
[15] | FANG Zhixiang, ZHONG Haoyu, ZOU Xinyan. Extracting urban road area based on combination of trajectory continuity and image feature similarity [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1554-1563. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||