Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (12): 2247-2261.doi: 10.11947/j.AGCS.2025.20250156
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Zhaoyang HOU1,2,3(
), Haowen YAN1,2,3(
), Liming ZHANG1,2,3, Rongjuan MA1,2,3, Ruitao QU1,2,3
Received:2025-04-28
Revised:2025-11-16
Online:2026-01-15
Published:2026-01-15
Contact:
Haowen YAN
E-mail:13230085@stu.lzjtu.edu.cn;yanhw@lzjtu.edu.cn
About author:HOU Zhaoyang (1996—), male, PhD candidate, majors in spatial data security. E-mail: 13230085@stu.lzjtu.edu.cn
Supported by:CLC Number:
Zhaoyang HOU, Haowen YAN, Liming ZHANG, Rongjuan MA, Ruitao QU. Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2247-2261.
Tab. 1
Zero watermark NC values among images"
| 影像 | 飞机场1 | 飞机场2 | 储油罐1 | 储油罐2 | 立交桥1 | 立交桥2 | 操场1 | 操场2 |
|---|---|---|---|---|---|---|---|---|
| 飞机场1 | 1.000 0 | 0.658 3 | 0.528 9 | 0.482 1 | 0.379 4 | 0.472 9 | 0.527 3 | 0.594 6 |
| 飞机场2 | 0.658 3 | 1.000 0 | 0.563 2 | 0.529 4 | 0.527 8 | 0.514 7 | 0.612 9 | 0.631 8 |
| 储油罐1 | 0.528 9 | 0.563 2 | 1.000 0 | 0.624 8 | 0.492 4 | 0.472 8 | 0.492 7 | 0.548 7 |
| 储油罐2 | 0.482 1 | 0.529 4 | 0.624 8 | 1.000 0 | 0.484 5 | 0.527 3 | 0.523 8 | 0.524 3 |
| 立交桥1 | 0.379 4 | 0.527 8 | 0.492 4 | 0.484 5 | 1.000 0 | 0.652 8 | 0.638 1 | 0.591 3 |
| 立交桥2 | 0.472 9 | 0.514 7 | 0.472 8 | 0.527 3 | 0.652 8 | 1.000 0 | 0.617 7 | 0.583 6 |
| 操场1 | 0.527 3 | 0.612 9 | 0.492 7 | 0.523 8 | 0.638 1 | 0.617 7 | 1.000 0 | 0.683 5 |
| 操场2 | 0.594 6 | 0.631 8 | 0.548 7 | 0.524 3 | 0.591 3 | 0.583 6 | 0.683 5 | 1.000 0 |
Tab. 2
Experimental results of geometric attacks"
| 攻击方式 | 参数 | PSNR | DFT-DCT[ | DCT-DFT[ | BEMD-DFT[ | NSST-SVD[ | 本文方法 | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BER | NC | BER | NC | BER | NC | BER | NC | BER | NC | |||
| 裁剪 | 左上角1/4 | 13.339 | 0.184 | 0.629 | 0.184 | 0.628 | 0.077 | 0.843 | 0.085 | 0.827 | 0.003 | 0.994 |
| 中心1/4 | 12.950 | 0.201 | 0.593 | 0.197 | 0.605 | 0.085 | 0.827 | 0.102 | 0.794 | 0.003 | 0.994 | |
| 翻转 | 上下 | 13.750 | 0.491 | 0.102 | 0.497 | 0.067 | 0.014 | 0.972 | 0.018 | 0.963 | 0.000 | 1.000 |
| 左右 | 13.612 | 0.503 | 0.062 | 0.489 | 0.128 | 0.020 | 0.959 | 0.021 | 0.957 | 0.000 | 1.000 | |
| 旋转 | 5° | 12.962 | 0.255 | 0.482 | 0.065 | 0.867 | 0.038 | 0.922 | 0.083 | 0.832 | 0.001 | 0.997 |
| 10° | 11.403 | 0.262 | 0.469 | 0.097 | 0.822 | 0.056 | 0.886 | 0.092 | 0.814 | 0.001 | 0.996 | |
| 20° | 10.144 | 0.274 | 0.447 | 0.109 | 0.776 | 0.103 | 0.791 | 0.115 | 0.767 | 0.002 | 0.995 | |
| 缩放 | 0.25 | 26.206 | 0.028 | 0.944 | 0.027 | 0.945 | 0.002 | 0.995 | 0.003 | 0.995 | 0.000 | 1.000 |
| 0.5 | 28.128 | 0.025 | 0.948 | 0.025 | 0.950 | 0.002 | 0.996 | 0.002 | 0.995 | 0.000 | 1.000 | |
| 2 | 38.847 | 0.002 | 0.997 | 0.001 | 0.997 | 0.000 | 0.999 | 0.000 | 1.000 | 0.000 | 1.000 | |
| 4 | 39,187 | 0.002 | 0.997 | 0.001 | 0.998 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | |
Tab. 3
Experimental results for non-geometric attacks"
| 攻击方式 | 参数 | PSNR | DFT-DCT[ | DCT-DFT[ | BEMD-DFT[ | NSST-SVD[ | 本文方法 | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BER | NC | BER | NC | BER | NC | BER | NC | BER | NC | |||
| 均值滤波 | [3,3] | 28.908 | 0.006 | 0.988 | 0.006 | 0.989 | 0.002 | 0.995 | 0.006 | 0.987 | 0.000 | 1.000 |
| [5,5] | 26.672 | 0.010 | 0.979 | 0.009 | 0.981 | 0.004 | 0.992 | 0.009 | 0.981 | 0.000 | 1.000 | |
| [7,7] | 25.411 | 0.015 | 0.970 | 0.013 | 0.974 | 0.006 | 0.987 | 0.013 | 0.975 | 0.000 | 1.000 | |
| [9,9] | 24.552 | 0.020 | 0.960 | 0.017 | 0.966 | 0.009 | 0.982 | 0.016 | 0.968 | 0.000 | 0.999 | |
| 中值滤波 | [3,3] | 29.102 | 0.018 | 0.964 | 0.017 | 0.966 | 0.003 | 0.993 | 0.004 | 0.991 | 0.000 | 1.000 |
| [5,5] | 27.176 | 0.031 | 0.937 | 0.030 | 0.939 | 0.007 | 0.986 | 0.009 | 0.982 | 0.000 | 1.000 | |
| [7,7] | 25.997 | 0.044 | 0.912 | 0.042 | 0.915 | 0.010 | 0.979 | 0.013 | 0.974 | 0.000 | 0.999 | |
| [9,9] | 25.168 | 0.055 | 0.889 | 0.053 | 0.893 | 0.014 | 0.972 | 0.016 | 0.967 | 0.001 | 0.998 | |
| 高斯滤波 | [3,3] | 29.858 | 0.005 | 0.989 | 0.005 | 0.990 | 0.003 | 0.994 | 0.006 | 0.989 | 0.000 | 1.000 |
| [5,5] | 28.586 | 0.007 | 0.985 | 0.007 | 0.987 | 0.004 | 0.991 | 0.007 | 0.985 | 0.000 | 1.000 | |
| [7,7] | 28.367 | 0.008 | 0.984 | 0.007 | 0.986 | 0.006 | 0.987 | 0.008 | 0.984 | 0.000 | 0.999 | |
| [9,9] | 28,247 | 0.008 | 0.984 | 0.007 | 0.986 | 0.007 | 0.986 | 0.008 | 0.984 | 0.001 | 0.998 | |
| 维纳滤波 | [3,3] | 43.026 | 0.002 | 0.997 | 0.001 | 0.997 | 0.000 | 1.000 | 0.000 | 0.999 | 0.000 | 1.000 |
| [5,5] | 38.980 | 0.002 | 0.995 | 0.002 | 0.996 | 0.000 | 0.999 | 0.001 | 0.999 | 0.000 | 1.000 | |
| [7,7] | 36.787 | 0.003 | 0.994 | 0.003 | 0.994 | 0.000 | 0.999 | 0.001 | 0.998 | 0.000 | 1.000 | |
| [9,9] | 35.386 | 0.004 | 0.992 | 0.004 | 0.992 | 0.001 | 0.998 | 0.001 | 0.998 | 0.000 | 1.000 | |
| 压缩 | 10 | 27.848 | 0.037 | 0.925 | 0.037 | 0.926 | 0.013 | 0.972 | 0.005 | 0.989 | 0.006 | 0.988 |
| 30 | 32.496 | 0.013 | 0.974 | 0.013 | 0.975 | 0.005 | 0.991 | 0.001 | 0.997 | 0.001 | 0.999 | |
| 50 | 34.567 | 0.008 | 0.983 | 0.008 | 0.985 | 0.003 | 0.996 | 0.001 | 0.998 | 0.000 | 1.000 | |
| 锐化 | 5 | 23.978 | 0.031 | 0.937 | 0.030 | 0.940 | 0.006 | 0.987 | 0.010 | 0.980 | 0.000 | 0.999 |
| 7 | 21.390 | 0.043 | 0.914 | 0.042 | 0.916 | 0.011 | 0.978 | 0.015 | 0.970 | 0.001 | 0.998 | |
| 9 | 19.618 | 0.054 | 0.892 | 0.052 | 0.894 | 0.015 | 0.970 | 0.020 | 0.960 | 0.002 | 0.996 | |
| 椒盐噪声 | 0.03 | 20.567 | 0.040 | 0.918 | 0.039 | 0.921 | 0.006 | 0.988 | 0.009 | 0.982 | 0.001 | 0.998 |
| 0.05 | 18.345 | 0.046 | 0.907 | 0.044 | 0.910 | 0.008 | 0.983 | 0.012 | 0.976 | 0.001 | 0.997 | |
| 0.1 | 15.333 | 0.063 | 0.872 | 0.062 | 0.873 | 0.012 | 0.976 | 0.018 | 0.963 | 0.001 | 0.997 | |
| 高斯噪声 | 0.03 | 19.757 | 0.032 | 0.936 | 0.032 | 0.934 | 0.009 | 0.982 | 0.011 | 0.977 | 0.000 | 0.999 |
| 0.05 | 19.169 | 0.039 | 0.921 | 0.043 | 0.923 | 0.013 | 0.974 | 0.015 | 0.969 | 0.001 | 0.998 | |
| 0.1 | 17.156 | 0.048 | 0.903 | 0.046 | 0.906 | 0.018 | 0.964 | 0.021 | 0.958 | 0.001 | 0.998 | |
| 泊松噪声 | — | 28.047 | 0.012 | 0.975 | 0.012 | 0.976 | 0.002 | 0.996 | 0.002 | 0.996 | 0.000 | 1.000 |
Tab. 4
Experimental results for combined attacks"
| 攻击方式 | 参数 | PSNR | DFT-DCT[ | DCT-DFT[ | BEMD-DFT[ | NSST-SVD[ | 本文方法 | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BER | NC | BER | NC | BER | NC | BER | NC | BER | NC | |||
| 中值滤波、维纳滤波 | [5,5]、[5,5] | 27.037 | 0.031 | 0.937 | 0.030 | 0.939 | 0.008 | 0.983 | 0.009 | 0.981 | 0.001 | 0.999 |
| 均值滤波、高斯滤波 | [5,5]、[5,5] | 26.150 | 0.015 | 0.970 | 0.013 | 0.973 | 0.007 | 0.985 | 0.013 | 0.975 | 0.004 | 0.992 |
| 均值滤波、锐化 | [5,5]、7 | 25.303 | 0.012 | 0.976 | 0.012 | 0.976 | 0.006 | 0.988 | 0.012 | 0.977 | 0.000 | 1.000 |
| 高斯滤波、压缩 | [5,5]、30 | 27.646 | 0.015 | 0.969 | 0.015 | 0.969 | 0.006 | 0.987 | 0.006 | 0.987 | 0.003 | 0.995 |
| 中值滤波、椒盐噪声 | [7,7]、0.03 | 19.403 | 0.042 | 0.915 | 0.040 | 0.919 | 0.011 | 0.978 | 0.012 | 0.976 | 0.001 | 0.997 |
| 压缩、高斯噪声 | 10、0.05 | 18.580 | 0.042 | 0.914 | 0.041 | 0.918 | 0.015 | 0.970 | 0.015 | 0.969 | 0.006 | 0.987 |
| 锐化、泊松噪声 | 5、— | 22.417 | 0.034 | 0.931 | 0.033 | 0.933 | 0.007 | 0.986 | 0.010 | 0.979 | 0.001 | 0.999 |
| 剪裁、翻转图像 | 左上1/4、上下 | 10.834 | 0.511 | 0.073 | 0.492 | 0.097 | 0.080 | 0.838 | 0.089 | 0.821 | 0.003 | 0.994 |
| 翻转图像、缩放 | 上下、4 | 13.682 | 0.487 | 0.120 | 0.491 | 0.029 | 0.014 | 0.972 | 0.018 | 0.963 | 0.000 | 1.000 |
| 翻转图像、压缩 | 左右、10 | 13.627 | 0.506 | 0.141 | 0.511 | 0.102 | 0.017 | 0.966 | 0.020 | 0.960 | 0.007 | 0.986 |
| 旋转、缩放 | 5°、0.25 | 13.185 | 0.257 | 0.478 | 0.068 | 0.862 | 0.042 | 0.915 | 0.083 | 0.831 | 0.004 | 0.992 |
| 椒盐噪声、高斯噪声、泊松噪声 | 0.05、0.05、— | 15.929 | 0.051 | 0.897 | 0.049 | 0.900 | 0.015 | 0.970 | 0.018 | 0.963 | 0.002 | 0.997 |
| 均值滤波、高斯噪声、裁剪 | [7,7]、0.03、左上1/4 | 13.122 | 0.190 | 0.623 | 0.188 | 0.620 | 0.081 | 0.837 | 0.087 | 0.821 | 0.003 | 0.994 |
| 维纳滤波、泊松噪声、翻转图像 | [5,5]、—、上下 | 13.510 | 0.502 | 0.018 | 0.497 | 0.043 | 0.014 | 0.972 | 0.018 | 0.963 | 0.000 | 1.000 |
| 高斯滤波、压缩、旋转 | [5,5]、30、5° | 13.160 | 0.258 | 0.476 | 0.069 | 0.859 | 0.043 | 0.914 | 0.086 | 0.825 | 0.004 | 0.991 |
| [1] | ZHANG Xinchang, SHI Qian, SUN Ying, et al. The review of land use/land cover mapping AI methodology and application in the era of remote sensing big data[J]. Journal of Geodesy and Geoinformation Science, 2024, 7(3): 1-23. |
| [2] | WANG Mengyu, YAN Zhiyuan, FENG Yingchao, et al. Multi-task learning of semantic segmentation and height estimation for multi-modal remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 27-39. |
| [3] | LI Jiaxin, HONG Danfeng, GAO Lianru, et al. Deep learning in multimodal remote sensing data fusion: a comprehensive review[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102926. |
| [4] | HOU Zhaoyang, YAN Haowen, ZHANG Liming, et al. A secure and efficient remote sensing image retrieval method with verifiable and traceable in cloud environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4701216. |
| [5] |
朱长青, 任娜, 徐鼎捷. 地理信息安全技术研究进展与展望[J]. 测绘学报, 2022, 51(6): 1017-1028. DOI: .
doi: 10.11947/j.AGCS.2022.20220172 |
|
ZHU Changqing, REN Na, XU Dingjie. Geo-information security technology: progress and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1017-1028. DOI: .
doi: 10.11947/j.AGCS.2022.20220172 |
|
| [6] |
奚旭, 张新长. 基于区间映射和最大扰动区域的矢量地图可逆水印算法[J]. 测绘学报, 2022, 51(11): 2379-2389. DOI: .
doi: 10.11947/j.AGCS.2022.20210552 |
|
XI Xu, ZHANG Xinchang. Reversible watermarking for vector maps based on interval mapping and maximum perturbation region[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2379-2389. DOI: .
doi: 10.11947/j.AGCS.2022.20210552 |
|
| [7] | REN Na, GUO Shuitao, ZHU Changqing, et al. A zero-watermarking scheme based on spatial topological relations for vector dataset[J]. Expert Systems with Applications, 2023, 226: 120217. |
| [8] |
朱长青, 徐鼎捷, 任娜, 等. 区块链与数字水印相结合的地理数据交易存证及版权保护模型[J]. 测绘学报, 2021, 50(12): 1694-1704. DOI: .
doi: 10.11947/j.AGCS.2021.20200559 |
|
ZHU Changqing, XU Dingjie, REN Na, et al. Model and implementation of geographic data transaction certificate and copyright protection based on blockchain and digital watermarking[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1694-1704. DOI: .
doi: 10.11947/j.AGCS.2021.20200559 |
|
| [9] | 赵蕾, 桂小林, 邵屹杨, 等. 数字图像多功能水印综述[J]. 计算机辅助设计与图形学学报, 2024, 36(2): 195-222. |
| ZHAO Lei, GUI Xiaolin, SHAO Yiyang, et al. Survey on multipurpose digital image watermarking[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(2): 195-222. | |
| [10] | TAN Tao, ZHANG Liming, ZHANG Mingwang, et al. Commutative encryption and watermarking algorithm based on compound chaotic systems and zero-watermarking for vector map[J]. Computers & Geosciences, 2024, 184: 105530. |
| [11] | XU Dingjie, REN Na, ZHU Changqing. High-resolution remote sensing image zero-watermarking algorithm based on blockchain and SDAE[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 323-339. |
| [12] | JING Liang, SUN Zhentao, CHEN Kexin, et al. Remote sensing image zero watermarking algorithm based on DFT[J]. Journal of Physics: Conference Series, 2021, 1865(4): 042034. |
| [13] | XING Siming, LI Tongyi, LIANG Jing. A zero-watermark hybrid algorithm for remote sensing images based on DCT and DFT[J]. Journal of Physics: Conference Series, 2021, 1952(2): 022049. |
| [14] | XING Siming, CHENG Zhilin, JI Chunyu, et al. Remote sensing image zero-watermark algorithm based on BEMD[J]. Journal of Physics: Conference Series, 2021, 1865(4): 042035. |
| [15] | 徐依朋, 胡坤, 王小超, 等. 基于BEMD和DFT的遥感图像零水印算法[J]. 计算机辅助设计与图形学学报, 2022, 34(11): 1731-1741. |
| XU Yipeng, HU Kun, WANG Xiaochao, et al. Zero-watermarking algorithm for remote sensing image via BEMD and DFT[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(11): 1731-1741. | |
| [16] | XU Dingjie, ZHU Changqing, REN Na. A zero-watermark algorithm for copyright protection of remote sensing image based on blockchain[C]//Proceedings of 2022 International Conference on Blockchain Technology and Information Security. Huaihua: IEEE, 2022: 111-116. |
| [17] | OUYANG Xue, XU Yanyan, MAO Yangsu, et al. Blockchain-assisted verifiable and secure remote sensing image retrieval in cloud environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 1378-1389. |
| [18] | SONG Hongyu, ZHU Nafei, XUE Ruixin, et al. Proof-of-contribution consensus mechanism for blockchain and its application in intellectual property protection[J]. Information Processing & Management, 2021, 58(3): 102507. |
| [19] | PENG Shaoliang, BAO Wenxuan, LIU Hao, et al. A peer-to-peer file storage and sharing system based on consortium blockchain[J]. Future Generation Computer Systems, 2023, 141: 197-204. |
| [20] | 侯昭阳, 吕开云, 龚循强, 等. 一种结合低级视觉特征和PAPCNN的NSST域遥感影像融合方法[J]. 武汉大学学报(信息科学版), 2023, 48(6): 960-969. |
| HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, et al. Remote sensing image fusion based on low-level visual features and PAPCNN in NSST domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. | |
| [21] | ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617. |
| [22] |
龚循强, 侯昭阳, 吕开云, 等. 结合改进Laplacian能量和参数自适应双通道ULPCNN的遥感影像融合方法[J]. 测绘学报, 2023, 52(11): 1892-1905. DOI: .
doi: 10.11947/j.AGCS.2023.20220541 |
|
GONG Xunqiang, HOU Zhaoyang, LÜ Kaiyun. Remote sensing image fusion method combining improved Laplacian energy and parameter adaptive dual-channel unit-linking pulse coupled neural network[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1892-1905. DOI: .
doi: 10.11947/j.AGCS.2023.20220541 |
|
| [23] | PENG Hong, WANG Jun. Coupled neural P systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(6): 1672-1682. |
| [24] | GONG Xunqiang, HOU Zhaoyang, WAN Yuting, et al. Multispectral and SAR image fusion for multiscale decomposition based on least squares optimization rolling guidance filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-20. |
| [25] | HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, et al. A remote sensing image fusion method combining low-level visual features and parameter-adaptive dual-channel pulse-coupled neural network[J]. Remote Sensing, 2023, 15(2): 344. |
| [26] | YU Chengting, GU Zheming, LI Da, et al. STSC-SNN: spatio-temporal synaptic connection with temporal convolution and attention for spiking neural networks[J]. Frontiers in Neuroscience, 2022, 16: 1079357. |
| [27] | EL HAJJI M, ES-SAADY Y, AIT ADDI M, et al. Optimization of agrifood supply chains using Hyperledger Fabric blockchain technology[J]. Computers and Electronics in Agriculture, 2024, 227: 109503. |
| [28] | ZHU Changpeng, FAN Bincheng, XIANG Nan, et al. A fine-grained compression scheme for block transmission acceleration over IPFS network[J]. Computer Networks, 2025, 261: 111131. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [3] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [4] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [5] | Jialing LI, Ji QI, Weipeng LU, Chao TAO. Self-supervised learning based urban functional zone classification by integrating optical remote sensing image-OSM data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 154-164. |
| [6] | Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153. |
| [7] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
| [8] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
| [9] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [10] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
| [11] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
| [12] | Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253. |
| [13] | Weitong CHEN, Xin XU, Changqing ZHU, Na REN. Protection for remote sensing object detection datasets based on backdoor watermarking and region of interest encryption [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2086-2098. |
| [14] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
| [15] | LIAN Renbao, ZHANG Zhenmin, LIAO Yipeng, ZOU Changzhong, HUANG Liqin. A quick road centreline extraction method from remote sensing images combining with geodesic distance field and curve smoothing [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1317-1329. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||