
测绘学报 ›› 2023, Vol. 52 ›› Issue (3): 501-514.doi: 10.11947/j.AGCS.2023.20210614
赵东保1, 邓悦1,2
收稿日期:2021-11-10
修回日期:2022-11-26
发布日期:2023-04-07
作者简介:赵东保(1979-),男,博士,教授,研究方向为空间数据融合与挖掘。E-mail:zdongbao@126.com
基金资助:ZHAO Dongbao1, DENG Yue1,2
Received:2021-11-10
Revised:2022-11-26
Published:2023-04-07
Supported by:摘要: 基于位置服务技术的迅猛发展,产生了巨量车辆轨迹数据。为了有效压缩并查询大规模车辆轨迹数据,本文提出一种面向压缩车辆轨迹的路径空间查询算法。本文算法基于Stroke道路层次结构压缩轨迹空间数据,提取关键变速点压缩轨迹时间数据,并构建了一种用于建立轨迹空间和时间数据之间联系的哈希编码,从而实现车辆轨迹的时空数据集成压缩。利用后缀数组对车辆轨迹的基于Stroke路段的压缩编码构建空间索引结构,再以此为基础,设计了车辆轨迹所对应路径的点信息查询算法、相同子路径查询算法和相似路径查询算法。试验结果表明,针对原始轨迹点空间数据,本文的压缩编码方法压缩比可以达到97∶1,与常规的基于路段编码方式相比,本文压缩编码在车辆轨迹的点信息路径查询方面,查询效率可以提升约2倍;在车辆轨迹的相同子路径查询方面,查询效率可以提升约8倍;在车辆轨迹的相似路径查询方面,查询耗时增长率减少了50%。本文算法对于大规模车辆轨迹的数据管理具有十分重要的基础性作用。
中图分类号:
赵东保, 邓悦. 顾及轨迹压缩的车辆路径查询算法[J]. 测绘学报, 2023, 52(3): 501-514.
ZHAO Dongbao, DENG Yue. Vehicle path queries method considering vehicle trajectory compression[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 501-514.
| [1] 江俊文, 王晓玲. 轨迹数据压缩综述[J]. 华东师范大学学报(自然科学版), 2015(5):61-76. JIANG Junwen, WANG Xiaoling. Review on trajectory data compression[J]. Journal of East China Normal University (Natural Science), 2015(5):61-76. [2] SUN Penghui, XIA Shixiong, YUAN Guan, et al. An overview of moving object trajectory compression algorithms[J]. Mathematical Problems in Engineering, 2016, 2016:1-13. [3] DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica:the International Journal for Geographic Information and Geovisualization, 1973, 10(2):112-122. [4] MERATNIA N, DE BY R A. Spatiotemporal compression techniques for moving point objects[M]//Advances in Database Technology-EDBT 2004. Berlin:Springer, 2004:765-782. [5] SONG Renchu, SUN Weiwei, ZHENG Baihua, et al. Press[J]. Proceedings of the VLDB Endowment, 2014, 7(9):661-672. [6] HAN Yunheng, SUN Weiwei, ZHENG Baihua. COMPRESS:a comprehensive framework of trajectory compression in road networks[J]. ACM Transactions on Database Systems, 2017, 42(2):1-49. [7] ZHAO Dongbao, STEFANAKIS E. Integrated compression of vehicle spatio-temporal trajectories under the road stroke network constraint[J]. Transactions in GIS, 2018, 22(4):991-1007. [8] CHEN Chao, DING Yan, XIE Xuefeng, et al. TrajCompressor:an online map-matching-based trajectory compression framework leveraging vehicle heading direction and change[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5):2012-2028. [9] BIRNBAUM J, MENG H C, HWANG J H, et al. Similarity-based compression of GPS trajectory data[C]//Proceedings of the 4th International Conference on Computing for Geospatial Research and Application. San Jose, CA, USA:IEEE, 2013:92-95. [10] MAKRIS A, LEITE DA SILVA C, BOGORNY V, et al. Evaluating the effect of compressing algorithms for trajectory similarity and classification problems[J]. Geoinformatica, 2021, 25(4):679-711. [11] SU Han, ZHENG Kai, ZENG Kai, et al. Making sense of trajectory data:a partition-and-summarization approach[C]//Proceedings of 2015 IEEE International Conference on Data Engineering. Seoul, Korea:IEEE, 2015:963-974. [12] GAO Chongming, ZHAO Yi, WU Ruizhi, et al. Semantic trajectory compression via multi-resolution synchronization-based clustering[J]. Knowledge-Based Systems, 2019, 174(C):177-193. [13] DENG Ke, XIE Kexin, ZHENG K, et al. Trajectory indexing and retrieval[M]//Computing with Spatial Trajectories. New York:Springer, 2011:35-60. [14] MAHMOOD A R, PUNNI S, AREF W G. Spatio-temporal access methods:a survey (2010-2017)[J]. GeoInformatica, 2019, 23(1):1-36. [15] FRENTZOS E. Indexing objects moving on fixed networks[M]//Advances in Spatial and Temporal Databases. Berlin:Springer, 2003:289-305. [16] TEIXEIRA DE ALMEIDA V, GVTING R H. Indexing the trajectories of moving objects in networks[J]. GeoInformatica, 2005, 9(1):33-60. [17] THEODORIDIS Y, SELLIS T, PAPADOPOULOS A N, et al. Specifications for efficient indexing in spatiotemporal databases[C]//Proceedings of the 10th International Conference on Scientific and Statistical Database Management. Capri, Italy:IEEE, 2002:123-132. [18] SANDU POPA I, ZEITOUNI K, ORIA V, et al. PARINET:a tunable access method for in-network trajectories[C]//Proceedings of 2010 IEEE International Conference on Data Engineering (ICDE 2010). Long Beach, CA, USA:IEEE, 2010:177-188. [19] PFOSER D, JENSEN C S, THEODORIDIS Y. Novel Approaches to the indexing of moving object trajectories[C]//Proceedings of 2000 Very Large Database Conference. Cairo, Egypt:The Association for Computing Machinery, 2000:395-406. [20] 丁治明. 一种适合于频繁位置更新的网络受限移动对象轨迹索引[J]. 计算机学报, 2012, 35(7):1448-1461. DING Zhiming. An index structure for frequently updated network-constrained moving object trajectories[J]. Chinese Journal of Computers, 2012, 35(7):1448-1461. [21] HENDAWI A M, BAO J, MOKBEL M F, et al. Predictive tree:an efficient index for predictive queries on road networks[C]//Proceedings of the 31st International Conference on Data Engineering. Seoul, Karea:IEEE, 2015:1215-1226. [22] DING Yichen, ZHOU Xun, WU Guojun, et al. Mining spatio-temporal reachable regions with multiple sources over massive trajectory data[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(7):2930-2942. [23] CHEN Rui, CHEN Mingjian, LI Wanli, et al. Predicting future locations of moving objects by recurrent mixture density network[J]. ISPRS International Journal of Geo-Information, 2020, 9(2):116. [24] YANG Xiaochun, WANG Bin, YANG Kai, et al. A novel representation and compression for queries on trajectories in road networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(4):613-629. [25] KOIDE S, TADOKORO Y, YOSHIMURA T, et al. CiNCT:compression and retrieval for massive vehicular trajectories via relative movement labeling[C]//Proceedings of the 34th International Conference on Data Engineering. Paris, France:IEEE, 2018:1097-1108. [26] LIU Yi, LI Wenjing. A new algorithms of Stroke generation considering geometric and structural properties of road network[J]. International Journal of Geo-Information, 2019, 8(7):304. [27] CHAWATHE S S. Segment-based map matching[C]//Proceedings of 2007 IEEE Intelligent Vehicles Symposium. Istanbul. Ankara, Turkey:IEEE, 2007:1190-1197. [28] 于娟, 杨琼, 鲁剑锋, 等. 高级地图匹配算法:研究现状和趋势[J]. 电子学报, 2021, 49(9):1818-1829. YU Juan, YANG Qiong, LU Jianfeng, et al. Advanced map matching algorithms:a survey and trends[J]. Acta Electronica Sinica, 2021, 49(9):1818-1829. [29] 左一萌, 林学练, 马帅, 等. 路网感知的在线轨迹压缩方法[J]. 软件学报, 2018, 29(3):734-755. ZUO Yimeng, LIN Xuelian, MA Shuai, et al. Road network aware online trajectory compression[J]. Journal of Software, 2018, 29(3):734-755. [30] LI Tianyi, HUANG Ruikai, CHEN Lu, et al. Compression of uncertain trajectories in road networks[J]. Proceedings of the VLDB Endowment, 2020, 13(7):1050-1063. [31] 付仲良, 翁宝凤, 胡玉龙. Stroke构造、移位一体化的道路网示意化方法[J]. 测绘学报, 2016, 45(9):1115-1121. DOI:10.11947/j.AGCS.2016.20160080. FU Zhongliang, WENG Baofeng, HU Yulong. A schematic method based on the integration of Stroke construction and displacement for road network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1115-1121. DOI:10.11947/j.AGCS.2016.20160080. [32] YU Wenhao, ZHANG Yifan, AI Tinghua, et al. Road network generalization considering traffic flow patterns[J]. International Journal of Geographical Information Science, 2020, 34(1):119-149. [33] 杨敏, 艾廷华, 周启. 顾及道路目标Stroke特征保持的路网自动综合方法[J]. 测绘学报, 2013, 42(4):581-587, 594. YANG Min, AI Tinghua, ZHOU Qi. A method of road network generalization considering Stroke properties of road object[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(4):581-587, 594. [34] LAO Bin, NONG Ge, CHAN Waihong, et al. Fast in-place suffix sorting on a multicore computer[J]. IEEE Transactions on Computers, 2018, 67(12):1737-1749. [35] SUNDAY D M. A very fast substring search algorithm[J]. Communications of the ACM, 1990, 33(8):132-142. |
| [1] | 邱越, 武芳, 翟仁健, 钱海忠, 黄哲琨, 李博. 面向匹配优化的多源建筑物实体级保形空间对齐模型[J]. 测绘学报, 2025, 54(12): 2262-2275. |
| [2] | 张锦彬, 朱军, 党沛, 周宇轩, 杨博文. 现场直播式地理信息服务:基于VR全景的现场实况远程临浸感知[J]. 测绘学报, 2025, 54(12): 2276-2286. |
| [3] | 张岩. 基于街景影像的城市功能区多尺度时空感知方法[J]. 测绘学报, 2025, 54(12): 2289-2289. |
| [4] | 曾进. 城市社会空间的空间大数据量化表达与分析方法:以深圳市为例[J]. 测绘学报, 2025, 54(12): 2292-2292. |
| [5] | 刘少俊. 基于手机信令数据的城市人群活动时空格局分析研究[J]. 测绘学报, 2025, 54(12): 2295-2295. |
| [6] | 吴超, 梁咏翔, 岳瀚, 崔远政, 黄波. 面向计数数据的时空地理加权泊松回归模型[J]. 测绘学报, 2025, 54(11): 2026-2039. |
| [7] | 王小龙, 王卓, 李精忠, 闫浩文. 微地图制图的空间方向关系转译法[J]. 测绘学报, 2025, 54(11): 2040-2051. |
| [8] | 胡鑫, 杨学习, 江一凡, 王宪彬, 丁晨, 谢顾然, 邓敏. 基于多智能体层次化协同的地理事件抽取与时空解析[J]. 测绘学报, 2025, 54(11): 2052-2067. |
| [9] | 李俊, 李朝奎, 黄磊, 冯媛媛. 高速公路广告牌巡检目标跟踪的改进ByteTrack算法[J]. 测绘学报, 2025, 54(11): 2068-2080. |
| [10] | 叶欣宇, 徐胜华, 刘纪平, 陈虹宇, 王琢璐, 李维炼. 基于时空因果推断的下一个兴趣点推荐[J]. 测绘学报, 2025, 54(11): 2081-2096. |
| [11] | 赵学胜, 谢文澜, 孙文彬. 空间格网互操作的研究进展与关键问题[J]. 测绘学报, 2025, 54(10): 1727-1740. |
| [12] | 高凡, 路威, 甘麟露, 章繁, 荣凤娟, 汤士涵. 智能驱动的并行地理计算引擎框架[J]. 测绘学报, 2025, 54(10): 1877-1892. |
| [13] | 吴浩宇, 朱庆, 丁雨淋, 鲍榴, 刘利. 数据模型知识协同驱动的隧道围岩高精度数字孪生建模方法[J]. 测绘学报, 2025, 54(10): 1893-1906. |
| [14] | 郝彧露. 时空数据驱动的城市区域火灾风险评估预测模型及应用[J]. 测绘学报, 2025, 54(10): 1910-1910. |
| [15] | 张付兵, 孙群, 徐青, 马京振, 黄文君, 陈若虚. 随机森林和图神经网络支持下的河系自动分级与选取方法[J]. 测绘学报, 2025, 54(9): 1697-1711. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||