[1] 姚宜斌,赵庆志. GNSS对流层水汽监测研究进展与展望[J].测绘学报, 2022, 51(6):935-952. DOI:10.11947/j.AGCS.2022. 20220039. YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):935-952. DOI:10.11947/j.AGCS.2022. 20220039. [2] 欧书圆,张卫星.基于最小二乘法无气象要素的PWV反演[J].测绘地理信息, 2021, 46(5):21-26. OU Shuyuan, ZHANG Weixing. PWV inversion without meteorological elements by least square method[J]. Journal of Geomatics, 2021, 46(5):21-26. [3] 张克非,李浩博,王晓明,等.地基GNSS大气水汽探测遥感研究进展和展望[J].测绘学报, 2022, 51(7):1172-1191. DOI:10.11947/j.AGCS.2022. 20220149. ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1172-1191. DOI:10.11947/j.AGCS.2022. 20220149. [4] ALI GOUDARZI M, COCARD M, SANTERRE R, et al. GPS interactive time series analysis software[J]. GPS Solutions, 2013, 17(4):595-603. [5] PIRES S, MATHUR S, GARCÍA R A, et al. Gap interpolation by inpainting methods:application to ground and space-based asteroseismic data[J]. Astronomy&Astrophysics, 2015, 574:A18. [6] 赵庆志,杜正,姚顽强,等. GNSS约束的MERSI/FY-3 A PWV校准方法[J].测绘学报, 2022, 51(2):159-168. DOI:10.11947/j.AGCS.2022. 20210060. ZHAO Qingzhi, DU Zheng, YAO Wanqiang, et al. The MERSI/FY-3 A PWV correction method based on GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):159-168. DOI:10.11947/j.AGCS.2022. 20210060. [7] 张文渊,郑南山,张书毕,等.附加高水平分辨率PWV约束的GNSS水汽层析算法[J].武汉大学学报(信息科学版), 2021, 46(11):1627-1635. ZHANG Wenyuan, ZHENG Nanshan, ZHANG Shubi, et al. GNSS water vapor tomography algorithm constrained with high horizontal resolution PWV data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11):1627-1635. [8] 郭秋英,赵耀,黄守凯,等.基于北斗PWV的暴雨时空变化特征分析[J].全球定位系统, 2022, 47(5):111-117. GUO Qiuying, ZHAO Yao, HUANG Shoukai, et al. Analysis of temporal and spatial variation characteristics of rainstorm based on BeiDou PWV[J]. GNSS World of China, 2022, 47(5):111-117. [9] 施闯,周凌昊,范磊,等.利用北斗/GNSS观测数据分析"21·7 "河南极端暴雨过程[J].地球物理学报, 2022, 65(1):186-196. SHI Chuang, ZHOU Linghao, FAN Lei, et al. Analysis of" 21·7"extreme rainstorm process in Henan Province using BeiDou/GNSS observation[J]. Chinese Journal of Geophysics, 2022, 65(1):186-196. [10] WANG X, ZHANG K, WU S, et al. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño-Southern Oscillation[J]. Remote Sensing of Environment, 2018, 216:1-12. [11] CHRISTIAN A. Direct solar transmittance and irradiance predictions with broadband models. Part I:detailed theoretical performance assessment[J]. Solar Energy, 2003, 74(5):355-379. [12] 吴昊,鄂盛龙,夏朋飞,等.联合地基GNSS及空基GNSS掩星探测水汽三维分布[J].导航定位与授时, 2020, 7(1):92-97. WU Hao, E Shenglong, XIA Pengfei, et al. Remote sensing the atmospheric water vapor using observations from the ground-based GNSS network and space-based radio occultation[J]. Navigation Positioning&Timing, 2020, 7(1):92-97. [13] GURBUZ G, JIN Shuanggen. Long-time variations of precipitable water vapour estimated from GPS, MODIS and radiosonde observations in Turkey[J]. International Journal of Climatology, 2017, 37(15):5170-5180. [14] ALI SHARIFI M, KHANIANI A S, JOGHATAEI M. Comparison of GPS precipitable water vapor and meteorological parameters during rainfalls in Tehran[J]. Meteorology and Atmospheric Physics, 2015, 127(6):701-710. [15] ABBASY S, ABBASI M, ASGARI J, et al. Precipitable water vapour estimation using the permanent single GPS station in Zanjan, Iran[J]. Meteorological Applications, 2017, 24(3):415-422. [16] WANG X, CHENG Y, WU S, et al. An effective toolkit for the interpolation and gross error detection of GPS time series[J]. Survey Review, 2016, 48(348):202-211. [17] ZHAO Qingzhi, MA Xiongwei, YAO Wanqiang, et al. A drought monitoring method based on precipitable water vapor and precipitation[J]. Journal of Climate, 2020, 33(24):10727-10741. [18] 崔磊,徐佼,黄玲,等.利用MERRA-2地表温压资料进行中国区域GNSS水汽反演的精度分析[J].大地测量与地球动力学, 2023, 43(2):186-190. CUI Lei, XU Jiao, HUANG Ling, et al. Accuracy analysis of Chinese mainland GNSS water vapor inversion using MERRA-2 surface temperature and pressure data[J]. Journal of Geodesy and Geodynamics, 2023, 43(2):186-190. [19] 刘严萍,王勇,丁克良,等.基于CMONOC的GNSS水汽短时频域特征研究[J].大地测量与地球动力学, 2021, 41(11):1118-1122. LIU Yanping, WANG Yong, DING Keliang, et al. Short term frequency domain characteristics of GNSS PWV based on CMONOC[J]. Journal of Geodesy and Geodynamics, 2021, 41(11):1118-1122. [20] ZHANG Weixing, LOU Yidong, HAASE J S, et al. The use of ground-based GPS precipitable water measurements over China to assess radiosonde and ERA-interim moisture trends and errors from 1999 to 2015[J]. Journal of Climate, 2017, 30(19):7643-7667. [21] ZHAO Qingzhi, YANG Pengfei, YAO Wanqiang, et al. Hourly PWV dataset derived from GNSS observations in China[J]. Sensors, 2019, 20(1):231. [22] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049. [23] 黄良珂,莫智翔,刘立龙,等.顾及时变递减因子的中国大陆地区大气可降水量垂直改正模型[J].测绘学报, 2021, 50(10):1320-1330. DOI:10.11947/j.AGCS.2021. 20200530. HUANG Liangke, MO Zhixiang, LIU Lilong, et al. An empirical model for the vertical correction of precipitable water vapor considering the time-varying lapse rate for Mainland China[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1320-1330. DOI:10.11947/j.AGCS.2021. 20200530. [24] ZHAO Q, DU Z, YAO W, et al. Hybrid precipitable water vapor fusion model in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208:105387. [25] LINDENBERGH R, KESHIN M, VAN DER MAREL H, et al. High resolution spatio-temporal water vapour mapping using GPS and MERIS observations[J]. International Journal of Remote Sensing, 2008, 29(8):2393-2409. [26] WEI J, LI Z, CRIBB M, et al. Improved 1 km resolution PM2. 5estimates across china using enhanced space-time extremely randomized trees[J]. Atmospheric Chemistry and Physics, 2020, 20(6):3273-3289. [27] WONG M, JIN Xiaomeng, LIU Zhizhao, et al. Geostationary satellite observation of precipitable water vapor using an empirical orthogonal function (EOF) based reconstruction technique over Eastern China[J]. Remote Sensing, 2015, 7(5):5879-5900 |