Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (11): 2125-2137.doi: 10.11947/j.AGCS.2024.20230473
• Geodesy and Navigation • Previous Articles
Qimin HE1,2,3(), Kefei ZHANG4(), Li LI1, Dajun LIAN1, Wei ZHAO1, Guodong CHEN1, Erjiang FU5, Rui WANG6
Received:
2023-10-25
Published:
2024-12-13
Contact:
Kefei ZHANG
E-mail:heqimin@usts.edu.cn;profkzhang@cumt.edu.cn
About author:
HE Qimin (1994—), male, PhD, lecturer, majors in GNSS meteorology. E-mail: heqimin@usts.edu.cn
Supported by:
CLC Number:
Qimin HE, Kefei ZHANG, Li LI, Dajun LIAN, Wei ZHAO, Guodong CHEN, Erjiang FU, Rui WANG. A four-parameter model for estimating typhoon motion states based on time difference of PWV arrival[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2125-2137.
Tab.1
Geodetic coordinates and elevations of GNSS stations"
站点 | 经度 | 纬度 | 高程/m |
---|---|---|---|
BJFS | 115.89°E | 39.61°N | 87.5 |
CHAN | 125.44°E | 43.79°N | 273.2 |
CKSV | 120.22°E | 23.00°N | 59.7 |
HKSL | 113.93°E | 22.37°N | 95.3 |
HKWS | 114.34°E | 22.43°N | 63.8 |
JFNG | 114.49°E | 30.52°N | 71.3 |
KMNM | 118.39°E | 24.46°N | 49.1 |
LHAZ | 91.10°E | 29.66°N | 3 624.6 |
NCKU | 120.22°E | 23.00°N | 98.3 |
SHAO | 121.20°E | 31.10°N | 22.0 |
TWTF | 121.16°E | 24.95°N | 201.5 |
URUM | 87.60°E | 43.81°N | 858.9 |
WUH2 | 114.36°E | 30.53°N | 28.2 |
TCMS | 120.99°E | 24.80°N | 77.2 |
Tab.2
Comparison results of the GNSS-PWV time series and ERA5-PWV time series"
站点 | Bias/mm | RMSE/mm | STD/mm | 皮尔逊相关系数 |
---|---|---|---|---|
BJFS | 0.42 | 2.71 | 2.68 | 0.98 |
CHAN | -0.60 | 2.50 | 2.42 | 0.98 |
CKSV | 0.09 | 2.92 | 2.92 | 0.97 |
HKSL | 0.97 | 2.53 | 2.34 | 0.98 |
HKWS | 0.86 | 2.45 | 2.29 | 0.98 |
JFNG | 1.08 | 2.96 | 2.76 | 0.98 |
KMNM | 0.53 | 2.77 | 2.72 | 0.98 |
LHAZ | 2.24 | 3.11 | 2.15 | 0.96 |
NCKU | -0.29 | 2.84 | 2.83 | 0.98 |
SHAO | -0.66 | 2.44 | 2.35 | 0.94 |
TWTF | 1.36 | 3.07 | 2.75 | 0.98 |
URUM | 1.17 | 2.51 | 2.23 | 0.95 |
WUH2 | 0.68 | 3.01 | 2.93 | 0.98 |
TCMS | 0.93 | 3.20 | 3.06 | 0.97 |
平均 | 0.63 | 2.79 | 2.60 | 0.97 |
Tab.3
Comparison results of velocity and direction angle"
台风 | 模型 | CMA线速度/(km/h) | CMA方向角/(°) | PGZP线速度/(km/h) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Bias | RMSE | STD | Bias | RMSE | STD | Bias | RMSE | STD | ||
利奇马 | TDOPA-4 | 0.43 | 4.97 | 4.95 | 8.78 | 25.82 | 24.28 | -0.60 | 3.99 | 3.95 |
TDOPA | 4.62 | 6.99 | 5.25 | 10.68 | 37.17 | 35.60 | 3.63 | 5.68 | 4.37 | |
白鹿 | TDOPA-4 | 0.08 | 7.81 | 7.81 | 0.58 | 17.37 | 17.38 | 5.06 | 6.84 | 4.60 |
TDOPA | 11.09 | 13.70 | 8.04 | -2.88 | 32.84 | 32.97 | 14.37 | 15.09 | 4.62 |
[1] |
黄良珂, 莫智翔, 刘立龙, 等. 顾及时变递减因子的中国大陆地区大气可降水量垂直改正模型[J]. 测绘学报, 2021, 50(10): 1320-1330. DOI:.
doi: 10.11947/j.AGCS.2021.20200530 |
HUANG Liangke, MO Zhixiang, LIU Lilong, et al. An empirical model for the vertical correction of precipitable water vapor considering the time-varying lapse rate for mainland China[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1320-1330. DOI:.
doi: 10.11947/j.AGCS.2021.20200530 |
|
[2] |
姚宜斌, 赵庆志. GNSS对流层水汽监测研究进展与展望[J]. 测绘学报, 2022, 51(6): 935-952. DOI:.
doi: 10.11947/j.AGCS.2022.20220039 |
YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952. DOI:.
doi: 10.11947/j.AGCS.2022.20220039 |
|
[3] | 饶晨泓, 毕鑫鑫, 陈光华, 等. 近海台风对“21·7”河南极端暴雨过程水汽通量和动、热力条件影响的模拟[J]. 大气科学, 2022, 46(6): 1577-1594. |
RAO Chenhong, BI Xinxin, CHEN Guanghua, et al. A numerical simulation on the impacts of the offshore typhoons on water vapor flux, dynamic and thermal conditions of the extreme rainstorm event in Henan province in July 2021[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 46(6): 1577-1594. | |
[4] | BONAFONI S, BIONDI R, BRENOT H, et al. Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: a review[J]. Atmospheric Research, 2019, 230: 104624. |
[5] | HE Q, ZHANG K, WU S, et al. An investigation of atmospheric temperature and pressure using an improved spatio-temporal Kriging model for sensing GNSS-derived precipitable water vapor[J]. Spatial Statistics, 2022, 51: 100664. |
[6] | YU S, LIU Z. Temporal and spatial impact of precipitable water vapor on GPS relative positioning during the tropical cyclone Hato (2017) in Hong Kong and Taiwan[J]. Earth and Space Science, 2021, 8(4): e2020EA001371. |
[7] | 朱明晨. GNSS水汽反演技术精化及台风水汽动态监测[D]. 南京: 东南大学, 2022. |
ZHU Mingchen. GNSS water vapor inversion technology improvement and dynamic monitoring during typhoon events[D]. Nanjing: Southeast University, 2022. | |
[8] | WON J, KIM D. Analysis of temporal and spatial variation of precipitable water vapor according to path of typhoon EWINIAR using GPS permanent stations[J]. Journal of Positioning, Navigation, and Timing, 2015, 4(2): 87-95. |
[9] | ZHAO Q, MA X, YAO W, et al. A new typhoon-monitoring method using precipitation water vapor[J]. Remote Sensing, 2019, 11(23): 2845. |
[10] | HE Q, ZHANG K, WU S, et al. Real-time GNSS-derived PWV for typhoon characterizations: a case study for super typhoon Mangkhut in Hong Kong[J]. Remote Sensing, 2019, 12(1): 104. |
[11] | KANG I, PARK J. Use of GNSS-derived PWV for predicting the path of typhoon: case studies of Soulik and Kongrey in 2018[J]. Journal of Surveying Engineering, 2021, 147(4): 04021018. |
[12] | NYKIEL G, FIGURSKI M, BALDYSZ Z. Analysis of GNSS sensed precipitable water vapour and tropospheric gradients during the derecho event in Poland of 11th August 2017[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 193: 105082. |
[13] | 赵庆志. 地基GNSS水汽反演关键技术研究及其应用[D]. 武汉: 武汉大学, 2017. |
ZHAO Qingzhi. Studies on the key technologies in water vapor inversion using ground-based GNSS and its applications[D]. Wuhan: Wuhan University, 2017. | |
[14] | SHOJI Y, KUNII M, SAITO K. Mesoscale data assimilation of Myanmar cyclone Nargis part II: assimilation of GPS-derived precipitable water vapor[J]. Journal of the Meteorological Society of Japan, 2011, 89(1): 67-88. |
[15] | TU M, ZHANG W, BAI J, et al. Spatio-temporal variations of precipitable water vapor and horizontal tropospheric gradients from GPS during Typhoon Lekima[J]. Remote Sensing, 2021, 13(20): 4082. |
[16] | LI Z, WANG J, WEI C, et al. Analysis of the temporal and spatial characteristics of PWV and rainfall with the typhoon movement: a case study of ‘Meihua’ in 2022[J]. Atmosphere, 2023, 14(8): 1313. |
[17] | WANG S, QIAO X. A local data assimilation method (local DA v1.0) and its application in a simulated typhoon case[J]. Geoscientific Model Development, 2022, 15(23): 8869-8897. |
[18] | 何琦敏. 地基GNSS水汽反演及其在极端天气中的应用研究[D]. 徐州: 中国矿业大学, 2021. |
HE Qimin. Water vapor retrieved from ground-based GNSS and its applications in extreme weather studies[D]. Xuzhou: China University of Mining and Technology, 2021. | |
[19] |
张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1172-1191. DOI:.
doi: 10.11947/j.AGCS.2022.20220149 |
ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. DOI:.
doi: 10.11947/j.AGCS.2022.20220149 |
|
[20] | 张雅杰. T市S局测绘类国家秘密信息保护机制研究[D]. 天津: 天津大学, 2019. |
ZHANG Yajie. Study on the protection mechanism of surveying and mapping state secret information in S Bureau of T city[D]. Tianjin: Tianjin University, 2019. | |
[21] |
黎峻宇, 姚宜斌, 刘立龙, 等. 基于多源数据和广义回归神经网络的ZWD预报模型[J]. 测绘学报, 2023, 52(9): 1492-1503. DOI:.
doi: 10.11947/j.AGCS.2023.20220084 |
LI Junyu, YAO Yibin, LIU Lilong, et al. A predicting ZWD model based on multi-source data and generalized regression neural network[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1492-1503. DOI:.
doi: 10.11947/j.AGCS.2023.20220084 |
|
[22] | LI J, ZHANG Q, LIU L, et al. A refined zenith tropospheric delay model for mainland China based on the global pressure and temperature 3 (GPT3) model and random forest[J]. GPS Solutions, 2023, 27(4): 172. |
[23] | HUANG L, ZHU G, PENG H, et al. An improved global grid model for calibrating zenith tropospheric delay for GNSS applications[J]. GPS Solutions, 2023, 27(1): 17. |
[24] | THAYER G D. An improved equation for the radio refractive index of air[J]. Radio Science, 1974, 9(10): 803-807. |
[25] | LIAN D, HE Q, LI L, et al. A novel method for monitoring tropical cyclones' movement using GNSS zenith tropospheric delay[J]. Remote Sensing, 2023, 15(13): 3247. |
[26] | BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801. |
[27] | YAO Yibin, SUN Zhangyu, XU Chaoqian. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 1-11. |
[28] | PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research (Solid Earth), 2012, 117: B04406. |
[29] | VEDEL H. Conversion of WGS84 geometric heights to NWP model HIRLAM geopotential heights, Danish Meteorological Institute[J/OL]. [2023-04-05]. https://www.dmi.dk/fileadmin/Rapporter/SR/sr00-04.pdf. |
[30] | YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301. |
[31] | LU Xiaoqin, YU Hui, YING Ying, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690-699. |
[32] | TAN J, CHEN B, WANG W, et al. Evaluating precipitable water vapor products from Fengyun-4A meteorological satellite using radiosonde, GNSS, and ERA5 Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. |
[33] | OFFILER D, JONES J, BENNIT G, et al. EIG EUMETNET GNSS water vapour programme (E-GVAP-II)[J/OL]. [2023-05-15]. https://egvap.dmi.dk. |
[1] | Dongsheng ZHAO, Xueli ZHANG, Shuanglei CUI, Qianxin WANG, Guanqing LI, Longjiang LI, Chendong LI, Kefei ZHANG. Accuracy assessment of ionospheric scintillation monitoring in high-latitude regions of the northern hemisphere utilizing geodetic GNSS receivers based on ROTI and AATR [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1251-1264. |
[2] | Tieding LU, Zhen LI. Prediction and interpolation of GNSS vertical time series based on the AdaBoost method considering geophysical effects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1077-1085. |
[3] | Hao XU, Qin ZHANG, Li WANG, Bao SHU, Yuan DU, Guanwen HUANG. Intelligent site selection method for UAV-dropped GNSS landslide monitoring equipment [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1140-1153. |
[4] | Xinghai YANG, Linguo YUAN, Zhongshan JIANG, Miao TANG. Joint inversion of GNSS and GRACE/GRACE-FO data for terrestrial water storage changes in Southwest China [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 813-822. |
[5] | Canghai ZHOU, Zhen TIAN, Zhen SHI, Hayinaer TUOKAN. The characteristic of the Yadong-Gulu faults motion constraints by InSAR timeseries and GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 933-945. |
[6] | Yiyong LUO, Dawei WU. Analysis of ionospheric disturbance induced by Tonga volcanic eruption on January 15, 2022 based on GPS TEC [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 629-643. |
[7] | Tian HE, Guojie MENG, Weiwei WU, Xiaoning SU, Guoqiang ZHAO, Congmin WEI, Zhihua DONG. Preliminary analysis to positioning precision and crustal movement of BDS-3 data recorded by the China seismic experiment site [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 653-665. |
[8] | HU Chao, WANG Qianxin. GNSS ultra-rapid orbit and clock offset estimation method with the aid of the constraint of BDS-3 onboard clock [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 413-424. |
[9] | MU Mengxue, ZHAO Long. A distributed GNSS/SINS/odometer resilient fusion navigation method for land vehicle [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 425-434. |
[10] | WANG Xiaolei, NAN Yang, HE Xiufeng, SONG Minfeng. GNSS-IR retrieval method with consideration of tidal periodicity of sea level [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 482-492. |
[11] | HUANG Lingyong, LI Shizhong, XIA Junming, WANG Haiyan, SUN Yueqiang, YANG Rixin, DU Qifei, HUANG Zhiyong. Accurate verification and evaluation of on-board GNSS-R interferometric altimetry under on-shore conditions [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 239-251. |
[12] | ZHAO Qingzhi, MA Zhi, YAO Yibin, DU Zheng. GNSS-assisted FY-3 satellite atmospheric precipitable water retrieval method [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 306-320. |
[13] | Lingqiu CHEN, Hongzhou CHAI, Jingyang BAO, Min WANG, Naiquan ZHENG. Sea surface height inversion based on inverse modeling of multi-GNSS and multi-frequency SNR data [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2099-2110. |
[14] | Zhaohui XIONG, Dunyong ZHENG, Yibin YAO, Changyong HE, Sichun LONG, Shide LU, Jian ZHOU, Xiangen LAI. An improved model for short-term qualitative rainfall prediction combined with GNSS PWV and meteorological parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1981-1992. |
[15] | WU Shuguang, BIAN Shaofeng, LI Houpu, LI Zhao, OUYANG Hua. Extraction of time-varying signals from GNSS height time series by variational mode decomposition [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 79-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||