Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (12): 2361-2374.doi: 10.11947/j.AGCS.2024.20230497
• Photogrammetry and Remote Sensing • Previous Articles
Qihao CHEN1(), Guangchao LI1, Wenjing CAO1,2(
), Xiuguo LIU1
Received:
2023-10-25
Published:
2025-01-06
Contact:
Wenjing CAO
E-mail:chenqihao@cug.edu.cn;13092310232@163.com
About author:
CHEN Qihao (1982—), male, PhD, associate professor, majors in synthetic aperture radar remote sensing information extraction and application. E-mail: chenqihao@cug.edu.cn
Supported by:
CLC Number:
Qihao CHEN, Guangchao LI, Wenjing CAO, Xiuguo LIU. Cropland intensity extraction combined using optical and SAR time-series in cloudy and rainy areas of southern China[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2361-2374.
Tab. 2
Precision of cropland intensity extraction results for different schemes in Honghu city"
方案 | 单季_PA/(%) | 单季_UA/(%) | 双季_PA/(%) | 双季_UA/(%) | 三季_PA/(%) | 三季_UA/(%) | OA/(%) | Kappa |
---|---|---|---|---|---|---|---|---|
方案1 | 96.40 | 63.77 | 67.82 | 97.72 | 73.93 | 99.79 | 77.76 | 0.60 |
方案2 | 98.77 | 63.89 | 69.81 | 97.72 | 75.33 | 99.79 | 79.88 | 0.63 |
方案3 | 93.74 | 83.92 | 90.41 | 95.43 | 77.44 | 99.63 | 91.14 | 0.82 |
本文方法 | 94.07 | 85.66 | 91.59 | 95.70 | 78.30 | 99.90 | 92.02 | 0.84 |
[1] | 陈秧分, 王介勇, 张凤荣, 等. 全球化与粮食安全新格局[J]. 自然资源学报, 2021, 36(6): 1362-1380. |
CHEN Yangfen, WANG Jieyong, ZHANG Fengrong, et al. New patterns of globalization and food security[J]. Journal of Natural Resources, 2021, 36(6): 1362-1380. | |
[2] | 刘巽浩, 陈阜, 吴尧. 多熟种植:中国农业的中流砥柱[J]. 作物杂志, 2015(6): 1-9. |
LIU Xunhao, CHEN Fu, WU Yao. Multiple cropping: the principal part of China's agriculture[J]. Crops, 2015(6): 1-9. | |
[3] | LIU Luo, XIAO Xiangming, QIN Yuanwei, et al. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2020, 239: 111624. |
[4] | PAN Li, XIA Haoming, YANG Jia, et al. Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102376. |
[5] | QIU Bingwen, HU Xiang, YANG Peng, et al. A robust approach for large-scale cropping intensity mapping in smallholder farms from vegetation, brownness indices and SAR time series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 203: 328-344. |
[6] | GRAY J, FRIEDL M, FROLKING S, et al. Mapping Asian cropping intensity with MODIS[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3373-3379. |
[7] | ESTEL S, KUEMMERLE T, LEVERS C, et al. Mapping cropland-use intensity across Europe using MODIS NDVI time series[J]. Environmental Research Letters, 2016, 11(2): 024015. |
[8] | HAO Pengyu, TANG Huajun, CHEN Zhongxin, et al. High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data[J]. Journal of Integrative Agriculture, 2019, 18(12): 2883-2897. |
[9] | JIANG Min, XIN Liangjie, LI Xiubin, et al. Decreasing rice cropping intensity in Southern China from 1990 to 2015[J]. Remote Sensing, 2018, 11(1): 35. |
[10] | LI Le, ZHAO Yaolong, FU Yingchun, et al. High resolution mapping of cropping cycles by fusion of Landsat and MODIS data[J]. Remote Sensing, 2017, 9(12): 1232. |
[11] | GUO Yan, XIA Haoming, PAN Li, et al. Mapping the northern limit of double cropping using a phenology-based algorithm and Google Earth Engine[J]. Remote Sensing, 2022, 14(4): 1004. |
[12] | TAO Jianbin, WANG Yun, QIU Bingwen, et al. Exploring cropping intensity dynamics by integrating crop phenology information using Bayesian networks[J]. Computers and Electronics in Agriculture, 2022, 193: 106667. |
[13] | HU Jie, CHEN Yunping, CAI Zhiwen, et al. Mapping diverse paddy rice cropping patterns in South China using harmonized Landsat and Sentinel-2 data[J]. Remote Sensing, 2023, 15(4): 1034. |
[14] | LIU Yuan, YU Qiangyi, ZHOU Qingbo, et al. Mapping the complex crop rotation systems in Southern China considering cropping intensity, crop diversity, and their seasonal dynamics[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9584-9598. |
[15] | XIANG Mingtao, YU Qiangyi, WU Wenbin. From multiple cropping index to multiple cropping frequency: observing cropland use intensity at a finer scale[J]. Ecological Indicators, 2019, 101: 892-903. |
[16] | ZHANG Miao, WU Bingfang, ZENG Hongwei, et al. GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery[J]. Earth System Science Data, 2021, 13(10): 4799-4817. |
[17] | WANG Yanyan, FANG Shenghui, ZHAO Lingli, et al. Parcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108: 102720. |
[18] | SCHLUND M, ERASMI S. Sentinel-1 time series data for monitoring the phenology of winter wheat[J]. Remote Sensing of Environment, 2020, 246: 111814. |
[19] | YANG Huijin, PAN Bin, LI Ning, et al. A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images[J]. Remote Sensing of Environment, 2021, 259: 112394. |
[20] | D'ANDRIMONT R, TAYMANS M, LEMOINE G, et al. Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and-2 time series[J]. Remote Sensing of Environment, 2020, 239: 111660. |
[21] | MERCIER A, BETBEDER J, BAUDRY J, et al. Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 231-256. |
[22] | XU Shuai, ZHU Xiaolin, CHEN Jin, et al. A robust index to extract paddy fields in cloudy regions from SAR time series[J]. Remote Sensing of Environment, 2023, 285: 113374. |
[23] | ZHANG Xi, SHEN Ruoque, ZHU Xiaolin, et al. Sample-free automated mapping of double-season rice in China using Sentinel-1 SAR imagery[J]. Frontiers in Environmental Science, 2023, 11: 1207882. |
[24] | YAN Huimin, XIAO Xiangming, HUANG Heqing, et al. Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data[J]. Chinese Geographical Science, 2014, 24: 205-219. |
[25] | GAO Feng, ANDERSON M C, ZHANG Xiaoyang, et al. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery[J]. Remote Sensing of Environment, 2017, 188: 9-25. |
[26] | YU Qiangyi, SHI Yun, TANG Huajun, et al. eFarm: a tool for better observing agricultural land systems[J]. Sensors, 2017, 17(3): 453. |
[27] |
刘巍, 吴志峰, 骆剑承, 等. 深度学习支持下的丘陵山区耕地高分辨率遥感信息分区分层提取方法[J]. 测绘学报, 2021, 50(1): 105-116. DOI:.
doi: 10.11947/j.AGCS.2021.20190448 |
LIU Wei, WU Zhifeng, LUO Jiancheng, et al. A divided and stratified extraction method of high-resolution remote sensing information for cropland in hilly and mountainous areas based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 105-116. DOI:.
doi: 10.11947/j.AGCS.2021.20190448 |
|
[28] | YU Juanjuan, HE Xiufeng, XU Jia, et al. An edge-assisted, object-oriented random forest approach for refined extraction of tea plantations using multi-temporal Sentinel-2 and high-resolution Gaofen-2 imagery[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 31-46. |
[29] | GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample: transferring a 30 m resolution sample set collected in 2015 to mapping 10 m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6): 370-373. |
[30] | FRANTZ D, HAßE , UHL A, et al. Improvement of the Fmask algorithm for Sentinel-2 images: separating clouds from bright surfaces based on parallax effects[J]. Remote Sensing of Environment, 2018, 215: 471-481. |
[31] | SOBRINO J A, RAISSOUNI N, LI Zhaoliang. A comparative study of land surface emissivity retrieval from NOAA data[J]. Remote Sensing of Environment, 2001, 75(2): 256-266. |
[32] | DONG Jinwei, XIAO Xiangming, KOU Weili, et al. Tracking the dynamics of paddy rice planting area in 1986—2010 through time series Landsat images and phenology-based algorithms[J]. Remote Sensing of Environment, 2015, 160: 99-113. |
[33] | CHEN Bangqian, XIAO Xiangming, YE Huichun, et al. Mapping forest and their spatial-temporal changes from 2007 to 2015 in tropical Hainan Island by integrating ALOS/ALOS-2 L-band SAR and Landsat optical images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 852-867. |
[34] | MERONI M, D'ANDRIMONT R, VRIELING A, et al. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and-2[J]. Remote Sensing of Environment, 2021, 253: 112232. |
[35] | LI He, FU Dongjie, HUANG Chong, et al. An approach to high-resolution rice paddy mapping using time-series sentinel-1 SAR data in the Mun River basin, Thailand[J]. Remote Sensing, 2020, 12(23): 3959. |
[36] | ACHANTA R, SUSSTRUNK S. Superpixels and polygons using simple non-iterative clustering[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4651-4660. |
[1] | Fengkai LANG, Suying HE, Aoshen QIU, Hongtao SHI, Nanshan ZHENG. Soil moisture inversion for high gravel surface with polarimetric SAR imagery [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2189-2200. |
[2] | Yinsheng ZHANG, Ge CHEN, Xiuxian DUAN, Junyi TONG, Mengjiao SHAN, Huilin SHAN. Landslide image segmentation model based on multi-layer feature information fusion [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2201-2212. |
[3] | Jiaxing LIU, Yuchun HUANG, Wenxuan SHI, Xi YE, He YANG. Road markings extraction considering topological structure [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2213-2227. |
[4] | Yunkai DENG, Yu WANG, Kaiyu LIU, Naiming OU, Dacheng LIU, Heng ZHANG, Jili WANG. Key technologies for spaceborne SAR payload of LuTan-1 satellite system [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1881-1895. |
[5] | Yandong GAO, Nanshan ZHENG, Yansuo ZHANG, Shijin LI, Huachao YANG, Hefang BIAN, Qiuzhao ZHANG, Shubi ZHANG, Yu TIAN. A phase unwrapping method based on phase quality fusion estimation and information filtering [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1910-1919. |
[6] | Yongjun ZHANG, Yansheng LI, Bo DANG, Kang WU, Xin GUO, Jian WANG, Jingdong CHEN, Ming YANG. Multi-modal remote sensing large foundation models: current research status and future prospect [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1942-1954. |
[7] | Mi WANG, Xu CHENG, Jun PAN, Yingdong PI, Jing XIAO. Large models enabling intelligent photogrammetry: status, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1955-1966. |
[8] | Qin YAN, Haiyan GU, Yi YANG, Haitao LI, Hengtong SHEN, Shiqi LIU. Research progress and trend of intelligent remote sensing large model [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1967-1980. |
[9] | Bufan ZHAO. Research on extraction methods for sematic and structural parameters and modeling application of laser point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 2040-2040. |
[10] | Mi WANG, Tengteng DONG, Tao PENG, Shao XIANG, Qiongqiong LAN. Remote sensing image stripe noise removal model based on detail information constraints [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1799-1816. |
[11] | Jia LI, Limin JIAO. Refined accounting and spatio-temporal characteristics of land use carbon budget [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1480-1492. |
[12] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
[13] | Yibo XING, Bin HAN, Bingkun BAO. River SAR image segmentation using L1 norm based hybrid active contours [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1598-1609. |
[14] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
[15] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 123
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||