[1] PADEN B, ČÁP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33-55. [2] 张一, 姜挺, 江刚武, 等. 特征法视觉SLAM逆深度滤波的三维重建[J]. 测绘学报, 2019, 48(6): 708-717. DOI: 10.11947/j.AGCS.2019.20180421. ZHANG Yi, JIANG Ting, JIANG Gangwu, et al. 3D reconstruction with inverse depth filter of feature-based visual SLAM[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 708-717. DOI: 10.11947/j.AGCS.2019.20180421. [3] 王晨捷, 罗斌, 李成源, 等. 无人机视觉SLAM协同建图与导航[J]. 测绘学报, 2020, 49(6): 767-776. DOI: 10.11947/j.AGCS.2020.20190145. WANG Chenjie, LUO Bin, LI Chengyuan, et al. The collaborative mapping and navigation based on visual SLAM in UAV platform[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 767-776. DOI: 10.11947/j.AGCS.2020.20190145. [4] KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan: IEEE, 2007: 225-234. [5] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. [6] MUR-ARTALR, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. [7] CAMPOS C,ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(1): 1-17. [8] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM: Dense tracking and mapping in real-time[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2320-2327. [9] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO: Fast semi-direct monocular visual odometry[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 15-22. [10] BAHRAINI M S, BOZORG M, RAD A B. SLAM in dynamic environments via ML-RANSAC[J]. Mechatronics, 2018, 49: 105-118. [11] STRECKE M, STUCKLER J. EM-fusion: Dynamic object-level SLAM with probabilistic data association[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 5864-5873. [12] 弋英民, 刘丁. 动态环境下基于路径规划的机器人同步定位与地图构建[J]. 机器人, 2010, 32(1): 83-90. YI Yingmin, LIU Ding. Robot simultaneous localization and mapping based on path planning in dynamic environments[J]. Robot, 2010, 32(1): 83-90. [13] ÖZKAN E, WAHLSTRÖM N, GODSILL S J. Rao-Blackwellised particle filter for star-convex extended target tracking models[C]//Proceedings of the 19th International Conference on Information Fusion (FUSION). Heidelberg, Germany: IEEE, 2016: 1193-1199. [14] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6): 693-704. DOI: 10.11947/j.AGCS.2018.20170640. GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704. DOI: 10.11947/j.AGCS.2018.20170640. [15] 邸凯昌, 万文辉, 赵红颖, 等. 视觉SLAM技术的进展与应用[J]. 测绘学报, 2018, 47(6): 770-779. DOI: 10.11947/j.AGCS.2018.20170652. DI Kaichang, WAN Wenhui, ZHAO Hongying, et al. Progress and applications of visual SLAM[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 770-779. DOI: 10.11947/j.AGCS.2018.20170652. [16] YU C, LIU Z X, LIU X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 1168-1174. [17] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [18] BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083. [19] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 2980-2988. [20] RUNZ M, BUFFIER M, AGAPITO L. MaskFusion: real-time recognition, tracking and reconstruction of multiple moving objects[C]//Proceedings of 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Munich, Germany: IEEE, 2018: 10-20. [21] 李琳辉, 张溪桐, 连静, 等. 结合道路结构化特征的语义SLAM算法[J]. 哈尔滨工业大学学报, 2021, 53(2): 175-183. LI Linhui, ZHANG Xitong, LIAN Jing, et al. Semantic SLAM algorithm combined with road structured features[J]. Journal of Harbin Institute of Technology, 2021, 53(2): 175-183. [22] ZHONG F W, WANG S, ZHANG Z Q, et al. Detect-SLAM: Making object detection and SLAM mutually beneficial[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe, NV, USA: IEEE, 2018: 1001-1010. [23] KONOLIGE K, AGRAWAL M. FrameSLAM: From bundle adjustment to real-time visual mapping[J]. IEEE Transactions on Robotics, 2008, 24(5): 1066-1077. [24] WESTOBY M J, BRASINGTON J, GLASSER N F, et al. “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179: 300-314. [25] 黄瑞, 张轶. 高适应性激光雷达SLAM[J]. 电子科技大学学报, 2021, 50(1): 52-58. HUANG Rui, ZHANG Yi. High adaptive LiDAR simultaneous localization and mapping[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(1): 52-58. [26] HULETSKI A, KARTASHOV D, KRINKIN K. Evaluation of the modern visual SLAM methods[C]//Proceedings of 2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT). St. Petersburg, Russia: IEEE, 2015: 19-25. |