[1] MAYER H. Automatic object extraction from aerial imagery-a survey focusing on buildings[J]. Computer Vision and Image Understanding, 1999, 74(2):138-149. [2] LIN C, NEVATIA R. Building detection and description from a single intensity image[J]. Computer vision and image understanding, 1998, 72(2):101-121. [3] DONG Yanni, DU Bo, ZHANG Liangpei. Target detection based on random forest metric learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1830-1838. [4] WEI Yanfeng, ZHAO Zhongming, SONG Jianghong. Urban building extraction from high-resolution satellite panchromatic image using clustering and edge detection[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage:IEEE, 2004:2008-2010. [5] DU Jianli, CHEN Dong, WANG Ruisheng, et al. A novel framework for 2.5-D building contouring from large-scale residential scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6):4121-4145. [6] SHACKELFORD A K, DAVIS C H, WANG Xiangyun. Automated 2D building footprint extraction from high-resolution satellite multispectral imagery[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage:IEEE, 2004:1996-1999. [7] Mohammad, Awrangjeb. Automatic extraction of building roofs using LiDAR data and multispectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83:1-18. [8] CUI Weihong, ZHANG Yi. An effective graph-based hierarchy image segmentation[J]. Intelligent Automation & Soft Computing, 2011, 17(7):969-981. [9] 范荣双, 陈洋, 徐启恒, 等. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 2019, 48(1):34-41.DOI:10.11947/j.AGCS.2019.20170638. FAN Rongshuang, CHEN Yang, XU Qiheng, et al. A high-resolution remote sensing image building extraction method based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):34-41.DOI:10.11947/j.AGCS.2019.20170638. [10] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1):1-15. [11] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [13] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition"[EB/OL].[2021-07-10]. https://arxiv.org/abs/1409.1556". [14] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston:IEEE, 2015:1-9. [15] LIU, LUO, HUANG, et al. DE-net:deep encoding network for building extraction from high-resolution remote sensing imagery[J]. Remote Sensing, 2019, 11(20):2380-2399. [16] HUANG Zuming, CHENG Guangliang, WANG Hongzhen, et al. Building extraction from multi-source remote sensing images via deep deconvolution neural networks[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing:IEEE, 2016:1835-1838. [17] MALTEZOS E, DOULAMIS A, DOULAMIS N, et al. Building extraction from LiDAR data applying deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1):155-159. [18] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical image computing and computer-assisted intervention. Cham:Springer,2015:234-241. [19] 崔卫红, 熊宝玉, 张丽瑶. 多尺度全卷积神经网络建筑物提取[J]. 测绘学报, 2019, 48(5):597-608. CUI Weihong, XIONG Baoyu, ZHANG Liyao. Multi-scale fully convolutional neural network for building extraction[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):597-608. [20] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas:IEEE, 2016:770-778. [22] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE, 2017:6230-6239. [23] CAI Yong, CHEN Dingyuan, TANG Yuanzhe, et al. Multi-scale building instance extraction framework in high resolution remote sensing imagery based on feature pyramid object-aware convolution neural network[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.Brussels:IEEE, 2021:2779-2782. [24] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:7132-7141. [25] ZHU Qing, LIAO Cheng, HU Han, et al. MAP-net:multiple attending path neural network for building footprint extraction from remote sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):6169-6181. [26] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459.DOI:10.11947/j.AGCS.2019.20180206. JI Shunping, WEI Shiqing. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459.DOI:10.11947/j.AGCS.2019.20180206. [27] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth:IEEE, 2017:3226-3229. [28] KYRKOU C, THEOCHARIDES T. Deep-learning-based aerial image classification for emergency response applications using unmanned aerial vehicles[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Long Beach:IEEE, 2020:517-525. |