[1] 何林帮. 基于多波束和浅剖的海底浅表层沉积物分类关键问题研究[J]. 测绘学报, 2016, 45(12):1498-1512. DOI:10.11947/j.AGCS.2016.20160466. HE Linbang. Research on key issues of sediment classification for seabed and sub-bottom based on multi-beam and sub-bottom profile echo intensity[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12):1498-1512. DOI:10.11947/j.AGCS.2016.20160466. [2] HERKVL K, PETERSON A, PAEKIVI S. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows[J]. Estuarine, Coastal and Shelf Science, 2017, 192:57-71. [3] 唐秋华, 纪雪, 丁继胜, 等. 多波束声学底质分类研究进展与展望[J]. 海洋科学进展, 2019, 37(1):1-10. TANG Qiuhua, JI Xue, DING Jisheng, et al. Research progress and prospect of acoustic seabed classification using multibeam echo sounder[J]. Advances in Marine Science, 2019, 37(1):1-10. [4] ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. A new method of automatic SVP optimization based on MOV algorithm[J]. Marine Geodesy, 2015, 38(3):225-240. [5] ZHOU Jieqiong, WU Ziyin, JIN Xianglong, et al. Observations and analysis of giant sand wave fields on the Taiwan Banks, northern South China Sea[J]. Marine Geology, 2018, 406:132-141. [6] TEGOWSKI J. Acoustical classification of the bottom sediments in the southern Baltic Sea[J]. Quaternary International, 2005, 130(1):153-161. [7] PRESTON J. Automated acoustic seabed classification of multibeam images of Stanton Banks[J]. Applied Acoustics, 2009, 70(10):1277-1287. [8] 熊明宽, 吴自银, 李守军, 等. 基于遗传小波神经网络的海底声学底质识别分类[J]. 海洋学报, 2014, 36(5):90-97. XIONG Mingkuan, WU Ziyin, LI Shoujun, et al. Wavelet neural network identification and classification of sediment seabed sonar images based on genetic algorithms[J]. Acta Oceanologica Sinica, 2014, 36(5):90-97. [9] HAMILTON L J, PARNUM I. Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves[J]. Continental Shelf Research, 2011, 31(2):138-148. [10] HASAN R C, IERODIACONOU D, LAURENSON L, et al. Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping[J]. PLoS One, 2014, 9(5):e97339. [11] MONTEYS X, HUNG P, SCOTT G, et al. The use of multibeam backscatter angular response for marine sediment characterisation by comparison with shallow electromagnetic conductivity[J]. Applied Acoustics, 2016, 112:181-191. [12] 金绍华, 李家彪, 吴自银, 等. 海底底质分类反向散射强度三维概率密度法[J]. 测绘学报, 2019, 48(1):124-131. DOI:10.11947/j.AGCS.2019.20170631. JIN Shaohua, LI Jiabiao, WU Ziyin, et al. 3D histogram of backscatter strength for seafloor substrates classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):124-131. DOI:10.11947/j.AGCS.2019.20170631. [13] 吕海龙, 杜德文, 石学法, 等. 基于测深数据的胶州湾底质类型估计方法[J]. 海洋科学进展, 2004, 22(3):328-333. LV Hailong, DU Dewen, SHI Xuefa, et al. Estimation method of bottom sediment type in the Jiaozhou Bay based on the bathymetric data[J]. Advances in Marine Science, 2004, 22(3):328-333. [14] MARSH I, BROWN C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV)[J]. Applied Acoustics, 2009, 70(10):1269-1276. [15] RANZATO M A, POULTNEY C, CHOPRA S, et al. Efficient learning of sparse representations with an energy-based model[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Kitakyushu, Japan:MIT Press, 2006:1137-1144. [16] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-127. [17] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [18] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251. ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251. [19] 王华斌, 韩旻, 王光辉, 等. 遥感影像要素提取的可变结构卷积神经网络方法[J]. 测绘学报, 2019, 48(5):583-596. DOI:10.11947/j.AGCS.2019.20180122. WANG Huabin, HAN Min, WANG Guanghui, et al. Surface features extraction in remote sensing images based on architecture-variant CNN[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):583-596. DOI:10.11947/j.AGCS.2019.20180122. [20] FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):90-100. DOI:10.11947/j.JGGS.2019.0210. [21] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489. [22] 余东行, 郭海涛, 张保明, 等. 级联卷积神经网络的遥感影像飞机目标检测[J]. 测绘学报, 2019, 48(8):1046-1058. DOI:10.11947/j.AGCS.2019.20180471. YU Donghang, GUO Haitao, ZHANG Baoming, et al. Aircraft detection in remote sensing images using cascade convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):1046-1058. DOI:10.11947/j.AGCS.2019.20180471. [23] 唐秋华, 刘保华, 陈永奇, 等. 结合遗传算法的LVQ神经网络在声学底质分类中的应用[J]. 地球物理学报, 2007, 50(1):313-319. TANG Qiuhua, LIU Baohua, CHEN Yongqi, et al. Application of LVQ neural network combined with the genetic algorithm in acoustic seafloor classification[J]. Chinese Journal of Geophysics, 2007, 50(1):313-319. [24] 纪雪. 基于多波束数据的海底底质及地形复杂度分类研究[D]. 青岛:国家海洋局第一海洋研究所, 2017. JI Xue. Classification of seabed sediment and terrain complexity based on multibeam data[D]. Qingdao:The First Institute of Oceanography, 2017. [25] 付楠. 基于声呐图像特征的海底底质类型分类方法研究[D]. 哈尔滨:哈尔滨工程大学, 2019. FU Nan. Research on classification method of submarine substrate type based on characteristics of sonar image[D]. Harbin:Harbin Engineering University, 2019. [26] HARALICK R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5):786-804. [27] SUN Wanxiao, KOLAPPAL A Z, GONG Peng. Two computation methods for detecting anisotropy in image texture[J]. Geographic Information Sciences, 2005, 11(2):87-96. [28] 郑淑丹, 郑江华, 石明辉, 等. 基于分形和灰度共生矩阵纹理特征的种植型药用植物遥感分类[J]. 遥感学报, 2014, 18(4):868-886. ZHENG Shudan, ZHENG Jianghua, SHI Minghui, et al. Classification of cultivated Chinese medicinal plants based on fractal theory and gray level co-occurrence matrix textures[J]. Journal of Remote Sensing, 2014, 18(4):868-886. [29] 郭德军, 宋蛰存. 基于灰度共生矩阵的纹理图像分类研究[J]. 林业机械与木工设备, 2005, 33(7):21-23. GUO Dejun, SONG Zhecun. A study on texture image classifying based on gray-level co-occurrence matrix[J]. Forestry Machinery & Woodworking Equipment, 2005, 33(7):21-23. [30] DÍAZ J V M. Analysis of multibeam sonar data for the characterization of seafloor habitats[D]. New Brunswick:University of New Brunswick, 2000. [31] ZHAO Jianhu, YAN Jun, ZHANG Hongmei, et al. Two self-adaptive methods of improving multibeam backscatter image quality by removing angular response effect[J]. Journal of Marine Science and Technology, 2017, 22(2):288-300. [32] MARDIA K V. Measures of multivariate skewness and kurtosis with applications[J]. Biometrika, 1970, 57(3):519-530. [33] GROENEVELD R A, MEEDEN G. Measuring skewness and kurtosis[J]. Journal of the Royal Statistical Society:Series D (The Statistician), 1984, 33(4):391-399. [34] 刘学军, 龚健雅, 周启鸣, 等. 基于DEM坡度坡向算法精度的分析研究[J]. 测绘学报, 2004, 33(3):258-263. DOI:10.3321/j.issn:1001-1595.2004.03.014. LIU Xuejun, GONG Jianya, ZHOU Qiming, et al. A study of accuracy and algorithms for calculating slope and aspect based on grid digital elevation model (DEM)[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(3):258-263. DOI:10.3321/j.issn:1001-1595.2004.03.014. [35] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [36] KIRANYAZ S, INCE T, GABBOUJ M. Real-time patient-specific ECG classification by 1D convolutional neural networks[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(3):664-675. [37] CONGALTON R G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991, 37(1):35-46. [38] LEWIS K B. A reversal of throw and change of trend on the Wellington fault in Wellington Harbour[J]. New Zealand Journal of Geology and Geophysics, 1989, 32(2):293-298. |