[1] JANAI J, GVNEY F, BEHL A, et al. Computer vision for autonomous vehicles:problems, datasets and state of the art[J]. Foundations and Trends® in Computer Graphics and Vision, 2020, 12(1-3):1-308. [2] 纪艳华. 顾及边缘信息的航摄影像半全局密集匹配算法研究[D]. 武汉:武汉大学, 2020. JI Yanhua. Research on semi-global dense matching algorithm for aerial images using edge information[D]. Wuhan:Wuhan University, 2020. [3] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1):1-15. [4] SCHARSTEIN D, SZELISKI R, ZABIH R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[C]//Proceedings of IEEE Workshop on Stereo and Multi-Baseline Vision. Kauai, HI, USA:IEEE, 2001:131-140. [5] ZABIH R, WOODFILL J. Non-parametric local transforms for computing visual correspondence[J]. Lecture Notes in Computer Science, 1994, 801(1):151-158. [6] BIRCHFIELD S, TOMASI C. Depth discontinuities by pixel-to-pixel stereo[C]//Proceedings of 6th International Conference on Computer Vision. Bombay, India:IEEE, 1998:1073-1080. [7] BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy minimization via graph cuts[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999:377-384. [8] HIRSCHMVLLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341. [9] ŽBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston, MA, USA:IEEE, 2015:1592-1599. [10] MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:4040-4048. [11] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet:learning optical flow with convolutional networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:2758-2766. [12] LIANG Z, FENG Y, GUO Y, et al. Learning deep correspondence through prior and posterior feature constancy[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA:IEEE,2017:2403-2411. [13] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:66-75. [14] NIBALI A, HE Z, MORGAN S, et al. Numerical coordinate regression with convolutional neural networks[EB/OL].[2020-08-25].https://arxiv.org/abs/1801.07372. [15] CHANG Jiaren, CHEN Yongsheng. Pyramid stereo matching network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:5410-5418. [16] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:6230-6239. [17] NEWELL A, YANG Kaiyu, DENG Jia. Stacked hourglass networks for human pose estimation[C]//Proceedings of 2016 Computer Vision. Amsterdam,The Netherlands:ECCV, 2016:483-499. [18] XIE Junyuan, GIRSHICK R, FARHADI A. Deep3D:fully automatic 2D-to-3D video conversion with deep convolutional neural networks[C]//Proceedings of 2016 Computer Vision.Amsterdam,The Netherlands:ECCV, 2016:842-857. [19] GARG R, VIJAY KUMAR B G, CARNEIRO G, et al. Unsupervised CNN for single view depth estimation:geometry to the rescue[C]//Proceedings of 2016 Computer Vision.Amsterdam,The Netherlands:ECCV 2016:740-756. [20] GODARD C, AODHA O M, BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA:IEEE, 2017:6602-6611. [21] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[EB/OL] [2020-08-25]. http://cn.arxiv.org/abs/1506.02025. [22] ZHONG Y, DAI Y, LI H. Self-supervised learning for stereo matching with self-improving ability[EB/OL] [2020-08-25]. http://cn.arxiv.org/abs/1709.00930. [23] 王玉锋, 王宏伟, 吴晨, 等. 基于共同视域的自监督立体匹配算法[J]. 光学学报, 2019, 39(2):287-296. WANG Yufeng, WANG Hongwei, WU Chen, et al. Self-supervised stereo matching algorithm based on common view[J]. Acta Optica Sinica, 2019, 39(2):287-296. [24] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego, CA, USA:IEEE, 2005:539-546. [25] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. [26] 刘瑾, 季顺平. 基于深度学习的航空遥感影像密集匹配[J]. 测绘学报, 2019, 48(9):1141-1150.DOI:10.11947/j.AGCS.2019.20180247. LIU Jin, JI Shunping. Deep learning based dense matching for aerial remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1141-1150.DOI:10.11947/j.AGCS.2019.20180247. [27] LIU Jin, JI Shunping. A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020:6049-6058. [28] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012:3354-3361. [29] MENZE M, GEIGER A. Object scene flow for autonomous vehicles[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015:3061-3070. [30] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in pytorch[EB/OL].[2020-08-25]. https://openreview.net/pdf?id=BJJsrmfCZ. [31] KINGMA D, BA J. Adam:a method for stochastic optimization[EB/OL].[2020-08-25]. http://arxiv.org/abs/1412.6980. |