Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1192-1205.doi: 10.11947/j.AGCS.2022.20220123
• Geodesy and Navigation • Previous Articles Next Articles
DANG Yamin1, YANG Qiang1, WANG Wei1, LIANG Yuke2
Received:2022-02-07
Revised:2022-05-10
Published:2022-08-13
Supported by:CLC Number:
DANG Yamin, YANG Qiang, WANG Wei, LIANG Yuke. Analysis on 3D crustal deformation of Qinghai-Tibet Plateau and its surrounding areas based on block model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1192-1205.
| [1] 许志琴,杨经绥,李海兵,等.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质, 2006, 33(2):221-238. XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Qinghai-Tibet Plateau and continental dynamics:a review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 2006, 33(2):221-238. [2] TAPPONNIER P, XU Zhiqin, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547):1671-1677. DOI:10.1126/science.105978. [3] 傅容珊,李力刚,黄建华,等.青藏高原隆升过程的三阶段模式[J].地球物理学报, 1999, 42(5):609-617. FU Rongshan, LI Ligang, HUANG Jianhua, et al. Three-step model of the Qinghai-Tibet Plateau uplift[J]. Chinese Journal of Geophysics, 1999, 42(5):609-617. [4] ARGAND E. La tectonique de l'Asie[C]//Proceedings of the 13th International Geological Congress. Brussels:[s.n.], 1924:170-372. [5] ENGLAND P, HOUSEMAN G. Finite strain calculations of continental deformation:2. comparison with the India-Asia collision zone[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B3):3664-3676. [6] ENGLAND P, HOUSEMAN G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B12):17561-17579. [7] HOUSEMAN G, ENGLAND P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B7):12233-12249. [8] AVOUAC J P, TAPPONNIER P. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 1993, 20(10):895-898. [9] DEWEY J F, BURKE K. Tibetan, Variscan, and Precambrian basement reactivation:products of continental collision[J]. The Journal of Geology, 1973, 81(6):683-692. [10] MCKENZIE D P. Active tectonics of the Alpine-Himalayan belt:the Aegean Sea and surrounding regions (tectonics of the Aegean region)[J]. Geophysical Journal International, 1978, 55(1):217-254. [11] MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4):357-396. [12] MATTE P, MATTAUER M, OLIVET J M, et al. Continental subductions beneath Tibet and the Himalayan orogeny:a review[J]. Terra Nova, 1997, 9(5-6):264-270. [13] 许志琴,杨经绥,姜枚.青藏高原北部的碰撞造山及深部动力学——中法地学合作研究新进展[J].地球学报, 2001, 22(1):5-10. XU Zhiqin, YANG Jingsui, JIANG Mei. Collision-orogeny of the northern Qinghai-Tibet Plateau and its deep dynamics[J]. Acta Geoscientia Sinica, 2001, 22(1):5-10. [14] 许志琴,杨经绥,戚学祥,等.印度/亚洲碰撞-南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J].地质通报, 2006, 25(1):1-14. XU Zhiqin, YANG Jingsui, QI Xuexiang, et al. India-Asia collision:a further discussion of N-S-and E-W-trending detachments and the orogenic mechanism of the modern Himalayas[J]. Geological Bulletin of China, 2006, 25(1):1-14. [15] 许志琴,李海兵,杨经绥.造山的高原——青藏高原巨型造山拼贴体和造山类型[J].地学前缘, 2006, 13(4):1-17. XU Zhiqin, LI Haibing, YANG Jingsui. An orogenic plateau-the orogenic collage and orogenic types of the Qinghai-Tibet plateau[J]. Earth Science Frontiers, 2006, 13(4):1-17. [16] ZHAO Wuling, MORGAN J. Uplift of Tibetan plateau[J]. Tectonics, 1985, 4(4):359-369. [17] ZHAO Wenjin, NELSON K D, CHE J, et al. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366(6455):557-559. [18] 王琪,赖西安,游新兆,等.红河断裂的GPS监测与现代构造应力场[J].地壳形变与地震, 1998, 18(2):52-59. WANG Qi, LAI Xi'an, YOU Xinzhao, et al. GPS measurement and present tectonic stress field in the Honghe fault, Southwest China[J]. Crustal Deformation and Earthquake, 1998, 18(2):52-59. [19] 甘卫军.中国大陆地壳运动GPS观测技术进展与展望[J].城市与减灾, 2021(4):39-44. GAN Weijun. Progress and prospect of GPS observation technology for crustal movement in Chinese mainland[J]. City and Disaster Reduction, 2021(4):39-44. [20] 王琪,游新兆,王文颖,等.跨喜马拉雅的GPS观测与地壳形变[J].地壳形变与地震, 1998, 18(3):45-52. WANG Qi, YOU Xinzhao, WANG Wenying, et al. GPS measurement and current crustal movement across the Himalaya[J]. Crustal Deformation and Earthquake, 1998, 18(3):45-52. [21] 朱文耀,程宗颐,熊永清,等.利用GPS技术监测青藏高原地壳运动的初步结果[J].中国科学(D辑), 1997, 27(5):385-389. ZHU Wenyao, CHENG Zongyi, XIONG Yonqing, et al. Preliminary results of measuring the crustal deformation in Qinghai-Xizang area using GPS technique[J]. Science in China Series D:Earth Sciences, 1997, 27(5):385-389. [22] 游新兆,王启梁,王琪,等.青藏高原1993年GPS观测成果的精度分析[J].地壳形变与地震, 1994, 14(3):27-33. YOU Xinzhao, WANG Qiliang, WANG Qi, et al. Analysis of the baseline precision of the GPS network observed in 1993 in Qinghai-Tibet plateau[J]. Crustal Deformation and Earthquake, 1994, 14(3):27-33. [23] 牛之俊,马宗晋,陈鑫连,等.中国地壳运动观测网络[J].大地测量与地球动力学, 2002, 22(3):88-93. NIU Zhijun, MA Zongjin, CHEN Xinlian, et al. Crustal movement observation network of China[J]. Journal of Geodesy and Geodynamics, 2002, 22(3):88-93. [24] 王敏,沈正康.中国大陆现今构造变形:三十年的GPS观测与研究[J].中国地震, 2020, 36(4):660-683. WANG Min, SHEN Zhengkang. Present-day tectonic deformation in continental China:thirty years of GPS observation and research[J]. Earthquake Research in China, 2020, 36(4):660-683. [25] 甘卫军,张锐,张勇,等.中国地壳运动观测网络的建设及应用[J].国际地震动态, 2007(7):43-52. GAN Weijun, ZHANG Rui, ZHANG Yong, et al. Development of the crustal movement observation network in china and its applications[J]. Recent Developments in World Seismology, 2007(7):43-52. [26] 瞿伟,高源,陈海禄,等.利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J].地球科学与环境学报, 2021, 43(1):182-204. QU Wei, GAO Yuan, CHEN Hailu, et al. Review on characteristics of present crustal tectonic movement and deformation in Qinghai-Tibet plateau, China using GPS high precision monitoring data[J]. Journal of Earth Sciences and Environment, 2021, 43(1):182-204. [27] 党亚民.珠峰高程复测有关问题的探讨[J].测绘科学, 2005, 30(3):101-103. DANG Yamin. Investigation on the height repetition determination of Qomolangma peak[J]. Science of Surveying and Mapping, 2005, 30(3):101-103. [28] 党亚民,程传录,陈俊勇,等. 2005珠峰测高GPS测量及其数据处理[J].武汉大学学报(信息科学版), 2006, 31(4):297-300, 320. DANG Yamin, CHEN Chuanlu, CHEN Junyong, et al. GPS data processing of the 2005 Qomolangma Height surveying[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4):297-300, 320. [29] 党亚民,郭春喜,蒋涛,等. 2020珠峰测量与高程确定[J].测绘学报, 2021, 50(4):556-561. DOI:10.11947/j.AGCS.2021.20210034. DANG Yamin, GUO Chunxi, JIANG Tao, et al. 2020 height measurement and determination of Mount Qomolangma[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4):556-561. DOI:10.11947/j.AGCS.2021.20210034. [30] BILHAM R, LARSON K, FREYMUELLER J. GPS Measurements of present-day convergence across the Nepal Himalaya[J]. Nature, 1997, 386(6):61-64. [31] BILHAM R, GAUR V K, MOLNAR P. Himalayan seismic hazard[J]. Science, 2001, 293(5534):1442-1444. [32] FREYMUELLER J T, BILHAM R, BVRGMAN N R, et al. Global positioning system measurements of Indian plate motion and convergence across the Lesser Himalaya[J]. Geophysical Research Letters, 1996, 23(22):3107-3110. [33] LARSON K, BVRGMAN R, BILHAM R, et al. Kinematics of the India-Eurasia collision zone from GPS measure-ments[J]. Geophys, 1999, 104:1077-1093. [34] BETTINELLI P, AVOUAC J P, FLOUZAT M, et al. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements[J]. Journal of Geodesy, 2006, 80(8-11):567-589. [35] 杨强,党亚民.利用GPS速度场估算青藏高原地壳韧性层等效粘滞系数分布的研究[J].测绘学报, 2010, 39(5):497-502. YANG Qiang, DANG Yamin. A research about effective viscosity of Tibetan Plateau lithosphere viscoelastic ductile layer using GPS velocity fields[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):497-502. [36] 王琪,张培震,牛之俊,等.中国大陆现今地壳运动和构造变形[J].中国科学(D辑), 2001, 31(7):529-536. WANG Qi, ZHANG Peizhen, NIU Zhijun, et al. The crust movement and tectonic deformation of the Chinese mainland[J]. Science in China (Ser D), 2001, 31(7):529-536. [37] WANG Qi, ZHANG Peizhen, FREYMUELLER J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 2001, 294(5542):574-577. [38] ZHANG Peizhen, SHEN Zhengkang, WANG Min, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9):809-812. [39] 张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J].中国科学(D辑), 2003, 33(S1):12-20. ZHANG Peizhen, DENG Qidong, ZHANG Guomin, et al. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D:Earth Sciences, 2003, 33(S1):12-20. [40] GAN Weijun, ZHANG Peizhen, SHEN Zhengkang, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B8):B08416. [41] 梁诗明.基于GPS观测的青藏高原现今三维地壳运动研究[D].北京:中国地震局地质研究所, 2014. LIANG Shiming. Three-dimensional velocity field of preset-day crustal motion of the Tibetan Plateau inferred from GPS measurements[D]. Beijing:Institute of Geology, China Earthquake Administration, 2014. [42] GE Weipeng, MOLNAR P, SHEN Zhengkang, et al. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 2015, 42(13):5227-5235. [43] YI Shuang, FREYMUELLER J T, SUN Wenke. How fast is the middle-lower crust flowing in eastern Tibet?A constraint from geodetic observations[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(9):6903-6915. [44] 王林松,陈超,邹蓉,等.利用GPS与GRACE监测陆地水负荷导致的季节性水平形变:以喜马拉雅山地区为例[J].地球物理学报, 2014, 57(6):1792-1804. WANG Linsong, CHEN Chao, ZOU Rong, et al. Using GPS and GRACE to detect seasonal horizontal deformation caused by loading of terrestrial water:A case study in the Himalayas[J]. Chinese Journal of Geophysics, 2014, 57(6):1792-1804. [45] 段虎荣,康明哲,吴绍宇,等.利用GRACE时变重力场反演青藏高原的隆升速率[J].地球物理学报, 2020, 63(12):4345-4360. DUAN Hurong, KANG Mingzhe, WU Shaoyu, et al. Uplift rate of the Tibetan Plateau constrained by GRACE time-variable gravity field[J]. Chinese Journal of Geophysics, 2020, 63(12):4345-4360. [46] 盛传贞,甘卫军,梁诗明,等.滇西地区GPS时间序列中陆地水载荷形变干扰的GRACE分辨与剔除[J].地球物理学报, 2014, 57(1):42-52. SHENG Chuanzhen, GAN Weijun, LIANG Shiming, et al. Identification and elimination of non-tectonic crustal deformation caused by land water from GPS time series in the western Yunnan province based on GRACE observations[J]. Chinese Journal of Geophysics, 2014, 57(1):42-52. [47] YAO Chaolong, LUO Zhicai, HU Yueming, et al. Detecting droughts in southwest china from GPS vertical position displacements[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):50-58. DOI:10.11947/j.JGGS.2020.0305. [48] THATCHER W. Microplate model for the present-day deformation of Tibet[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B1):B01401. [49] THATCHER W. How the continents deform:the evidence from tectonic geodesy[J]. Annual Review of Earth and Planetary Sciences, 2009, 37:237-262. [50] 党亚民,杨强,梁诗明,等.川滇区域活动块体运动与应变特征地震影响分析[J].测绘学报, 2018, 47(5):559-566. DOI:10.11947/j.AGCS.2018.20160311. DANG Yamin, YANG Qiang, LIANG Shiming, et al. Block movement and strain characteristics effected by earthquake in Sichuan-Yunnan region[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):559-566. DOI:10.11947/j.AGCS.2018.20160311. [51] 邓起东,张培震,冉永康,等.中国活动构造基本特征[J].中国科学(D辑), 2002, 32(12):1020-1030. DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic characteristics of active tectonics of China[J]. Science in China Series D:Earth Sciences, 2002, 32(12):1020-1030. [52] 王敏,沈正康,牛之俊,等.现今中国大陆地壳运动与活动块体模型[J].中国科学(D辑), 33(S1):21-32. WANG Min, SHEN Zhengkang, NIU Zhijun, et al. Contemporary crustal deformation of the Chinese continent and tectonic block model[J]. Science in China Series D:Earth Sciences, 33(S1):21-32. [53] 张国民,马宏生,王辉,等.中国大陆活动地块边界带与强震活动[J].地球物理学报, 2005, 48(3):602-610. ZHANG Guomin, MA Hongsheng, WANG Hui, et al. Boundaries between active_tectonic blocks and strong earthquakes in the China mainland[J]. Chinese Journal of Geophysics, 2005, 48(3):602-610. [54] 程鹏飞,成英燕,秘金钟,等. CGCS2000板块模型构建[J].测绘学报, 2013, 42(2):159-167. CHENG Pengfei, CHENG Yingyan, BI Jinzhong, et al. CGCS2000 plate motion model[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):159-167. [55] 李海兵,潘家伟,孙知明,等.大陆构造变形与地震活动——以青藏高原为例[J].地质学报, 2021, 95(1):194-213. LI Haibing, PAN Jiawei, SUN Zhiming, et al. Continental tectonic deformation and seismic activity:a case study from the Tibetan Plateau[J]. Acta Geologica Sinica, 2021, 95(1):194-213. [56] 曹建玲,石耀霖,张怀,等.青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J].科学通报, 2009, 54(2):224-234. CAO Jianling, SHI Yaolin, ZHANG Huai, et al. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(2):224-234. |
| [1] | Yarong LUO, Wentao LU, Chi GUO, Jingnan LIU. Left-handed symmetry equivariant filtering model and algorithm for GNSS/INS integrated navigation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1389-1403. |
| [2] | Yangyi CHEN, Kai ZHENG, Xiaohong ZHANG, Mingkui WU, Pengxu WANG, Wenju FU, Kezhong LIU. GPS/Galileo/BDS overlapping frequencies multipath error analysis and modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1427-1438. |
| [3] | Jianzhang LI, Haowen YAN, Weifang YANG, Xiaoning SU. GNSS pseudo trigonometric leveling method [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1170-1177. |
| [4] | Qingzhi ZHAO, Lulu CHANG, Yibin YAO, Haojie LI. A method for constructing a hydrological drought index integrated with GNSS and meteorological data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1192-1205. |
| [5] | Qianxin WANG, Chao HU, Tong CHENG. A method for satellite ultra-rapid orbit and clock offset estimation based on the prior information of the GNSS clock parameters [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 982-994. |
| [6] | Yang SHEN, Guangyun LI, Mingjian CHEN, Linyang LI, Xingyu SHI, Wei CAI, Weifeng HAO. Assessment of GNSS ionosphere models based on FY-3 TEC in polar regions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 995-1008. |
| [7] | Shunqiang HU, Kejie CHEN, Xiaoxing HE, Hai ZHU, Tan WANG. The impact of environmental loading on nonlinear variations of 3D coordinate time series of GNSS stations in Sichuan and Yunnan region [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 805-818. |
| [8] | Wentao YANG, Fei GUO, Xiaohong ZHANG, Zhiyu ZHANG, Yifan ZHU, Zheng LI, Ziheng WU. Soil moisture and freeze-thaw map using GNSS reflectometer and SMAP radiometer for Qinghai-Xizang Plateau [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 725-735. |
| [9] | Qingzhi ZHAO, Duoduo JIANG, Hongwu GUO, Zufeng LI, Chen LIU, Yibin YAO. A general method for determining the key parameters of GNSS water vapor tomography modeling [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 410-421. |
| [10] | Xuexi LIU, Shouqing ZHU, Guo CHEN, Kefei ZHANG, Nanshan ZHENG, Jingxuan LIU. Consistency analysis of GNSS precise orbit and clock products based on globally unified coordinate frame [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 432-447. |
| [11] | Zhaofeng DU, Guopeng LI, Zhanke LIU, Xiaming SHANG, Shengjun KANG, Xiaoqiang WANG. Comprehensive analysis of multiple monitoring methods in main subsidence areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 481-492. |
| [12] | Yangyang LU, Huizhong ZHU, Bo LI, Jun LI, Aigong XU. PPP algorithm for multi-frequency GPS/Galileo/BDS-3 with IFCB time-varying characteristic constraints [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 233-247. |
| [13] | Jixing ZHU, Shuqiang XUE, Baojin LI, Zhen XIAO, Kaiming WANG. GNSS-acoustic inversion of double-exponential temperature profile [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 286-296. |
| [14] | Bofeng LI, Long CHEN, Leitong YUAN. A high-precision deformation monitoring method with GNSS multi-baseline solutions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2116-2128. |
| [15] | Tao GENG, Qiang LI, Lingyue CHENG, Jingnan LIU. The correction method of relativistic effects for GNSS and LEO satellites [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2129-2141. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||