Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (7): 1192-1205.doi: 10.11947/j.AGCS.2022.20220123
• Geodesy and Navigation • Previous Articles Next Articles
DANG Yamin1, YANG Qiang1, WANG Wei1, LIANG Yuke2
Received:
2022-02-07
Revised:
2022-05-10
Published:
2022-08-13
Supported by:
CLC Number:
DANG Yamin, YANG Qiang, WANG Wei, LIANG Yuke. Analysis on 3D crustal deformation of Qinghai-Tibet Plateau and its surrounding areas based on block model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1192-1205.
[1] 许志琴,杨经绥,李海兵,等.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质, 2006, 33(2):221-238. XU Zhiqin, YANG Jingsui, LI Haibing, et al. The Qinghai-Tibet Plateau and continental dynamics:a review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 2006, 33(2):221-238. [2] TAPPONNIER P, XU Zhiqin, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547):1671-1677. DOI:10.1126/science.105978. [3] 傅容珊,李力刚,黄建华,等.青藏高原隆升过程的三阶段模式[J].地球物理学报, 1999, 42(5):609-617. FU Rongshan, LI Ligang, HUANG Jianhua, et al. Three-step model of the Qinghai-Tibet Plateau uplift[J]. Chinese Journal of Geophysics, 1999, 42(5):609-617. [4] ARGAND E. La tectonique de l'Asie[C]//Proceedings of the 13th International Geological Congress. Brussels:[s.n.], 1924:170-372. [5] ENGLAND P, HOUSEMAN G. Finite strain calculations of continental deformation:2. comparison with the India-Asia collision zone[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B3):3664-3676. [6] ENGLAND P, HOUSEMAN G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B12):17561-17579. [7] HOUSEMAN G, ENGLAND P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B7):12233-12249. [8] AVOUAC J P, TAPPONNIER P. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 1993, 20(10):895-898. [9] DEWEY J F, BURKE K. Tibetan, Variscan, and Precambrian basement reactivation:products of continental collision[J]. The Journal of Geology, 1973, 81(6):683-692. [10] MCKENZIE D P. Active tectonics of the Alpine-Himalayan belt:the Aegean Sea and surrounding regions (tectonics of the Aegean region)[J]. Geophysical Journal International, 1978, 55(1):217-254. [11] MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4):357-396. [12] MATTE P, MATTAUER M, OLIVET J M, et al. Continental subductions beneath Tibet and the Himalayan orogeny:a review[J]. Terra Nova, 1997, 9(5-6):264-270. [13] 许志琴,杨经绥,姜枚.青藏高原北部的碰撞造山及深部动力学——中法地学合作研究新进展[J].地球学报, 2001, 22(1):5-10. XU Zhiqin, YANG Jingsui, JIANG Mei. Collision-orogeny of the northern Qinghai-Tibet Plateau and its deep dynamics[J]. Acta Geoscientia Sinica, 2001, 22(1):5-10. [14] 许志琴,杨经绥,戚学祥,等.印度/亚洲碰撞-南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J].地质通报, 2006, 25(1):1-14. XU Zhiqin, YANG Jingsui, QI Xuexiang, et al. India-Asia collision:a further discussion of N-S-and E-W-trending detachments and the orogenic mechanism of the modern Himalayas[J]. Geological Bulletin of China, 2006, 25(1):1-14. [15] 许志琴,李海兵,杨经绥.造山的高原——青藏高原巨型造山拼贴体和造山类型[J].地学前缘, 2006, 13(4):1-17. XU Zhiqin, LI Haibing, YANG Jingsui. An orogenic plateau-the orogenic collage and orogenic types of the Qinghai-Tibet plateau[J]. Earth Science Frontiers, 2006, 13(4):1-17. [16] ZHAO Wuling, MORGAN J. Uplift of Tibetan plateau[J]. Tectonics, 1985, 4(4):359-369. [17] ZHAO Wenjin, NELSON K D, CHE J, et al. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366(6455):557-559. [18] 王琪,赖西安,游新兆,等.红河断裂的GPS监测与现代构造应力场[J].地壳形变与地震, 1998, 18(2):52-59. WANG Qi, LAI Xi'an, YOU Xinzhao, et al. GPS measurement and present tectonic stress field in the Honghe fault, Southwest China[J]. Crustal Deformation and Earthquake, 1998, 18(2):52-59. [19] 甘卫军.中国大陆地壳运动GPS观测技术进展与展望[J].城市与减灾, 2021(4):39-44. GAN Weijun. Progress and prospect of GPS observation technology for crustal movement in Chinese mainland[J]. City and Disaster Reduction, 2021(4):39-44. [20] 王琪,游新兆,王文颖,等.跨喜马拉雅的GPS观测与地壳形变[J].地壳形变与地震, 1998, 18(3):45-52. WANG Qi, YOU Xinzhao, WANG Wenying, et al. GPS measurement and current crustal movement across the Himalaya[J]. Crustal Deformation and Earthquake, 1998, 18(3):45-52. [21] 朱文耀,程宗颐,熊永清,等.利用GPS技术监测青藏高原地壳运动的初步结果[J].中国科学(D辑), 1997, 27(5):385-389. ZHU Wenyao, CHENG Zongyi, XIONG Yonqing, et al. Preliminary results of measuring the crustal deformation in Qinghai-Xizang area using GPS technique[J]. Science in China Series D:Earth Sciences, 1997, 27(5):385-389. [22] 游新兆,王启梁,王琪,等.青藏高原1993年GPS观测成果的精度分析[J].地壳形变与地震, 1994, 14(3):27-33. YOU Xinzhao, WANG Qiliang, WANG Qi, et al. Analysis of the baseline precision of the GPS network observed in 1993 in Qinghai-Tibet plateau[J]. Crustal Deformation and Earthquake, 1994, 14(3):27-33. [23] 牛之俊,马宗晋,陈鑫连,等.中国地壳运动观测网络[J].大地测量与地球动力学, 2002, 22(3):88-93. NIU Zhijun, MA Zongjin, CHEN Xinlian, et al. Crustal movement observation network of China[J]. Journal of Geodesy and Geodynamics, 2002, 22(3):88-93. [24] 王敏,沈正康.中国大陆现今构造变形:三十年的GPS观测与研究[J].中国地震, 2020, 36(4):660-683. WANG Min, SHEN Zhengkang. Present-day tectonic deformation in continental China:thirty years of GPS observation and research[J]. Earthquake Research in China, 2020, 36(4):660-683. [25] 甘卫军,张锐,张勇,等.中国地壳运动观测网络的建设及应用[J].国际地震动态, 2007(7):43-52. GAN Weijun, ZHANG Rui, ZHANG Yong, et al. Development of the crustal movement observation network in china and its applications[J]. Recent Developments in World Seismology, 2007(7):43-52. [26] 瞿伟,高源,陈海禄,等.利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J].地球科学与环境学报, 2021, 43(1):182-204. QU Wei, GAO Yuan, CHEN Hailu, et al. Review on characteristics of present crustal tectonic movement and deformation in Qinghai-Tibet plateau, China using GPS high precision monitoring data[J]. Journal of Earth Sciences and Environment, 2021, 43(1):182-204. [27] 党亚民.珠峰高程复测有关问题的探讨[J].测绘科学, 2005, 30(3):101-103. DANG Yamin. Investigation on the height repetition determination of Qomolangma peak[J]. Science of Surveying and Mapping, 2005, 30(3):101-103. [28] 党亚民,程传录,陈俊勇,等. 2005珠峰测高GPS测量及其数据处理[J].武汉大学学报(信息科学版), 2006, 31(4):297-300, 320. DANG Yamin, CHEN Chuanlu, CHEN Junyong, et al. GPS data processing of the 2005 Qomolangma Height surveying[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4):297-300, 320. [29] 党亚民,郭春喜,蒋涛,等. 2020珠峰测量与高程确定[J].测绘学报, 2021, 50(4):556-561. DOI:10.11947/j.AGCS.2021.20210034. DANG Yamin, GUO Chunxi, JIANG Tao, et al. 2020 height measurement and determination of Mount Qomolangma[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4):556-561. DOI:10.11947/j.AGCS.2021.20210034. [30] BILHAM R, LARSON K, FREYMUELLER J. GPS Measurements of present-day convergence across the Nepal Himalaya[J]. Nature, 1997, 386(6):61-64. [31] BILHAM R, GAUR V K, MOLNAR P. Himalayan seismic hazard[J]. Science, 2001, 293(5534):1442-1444. [32] FREYMUELLER J T, BILHAM R, BVRGMAN N R, et al. Global positioning system measurements of Indian plate motion and convergence across the Lesser Himalaya[J]. Geophysical Research Letters, 1996, 23(22):3107-3110. [33] LARSON K, BVRGMAN R, BILHAM R, et al. Kinematics of the India-Eurasia collision zone from GPS measure-ments[J]. Geophys, 1999, 104:1077-1093. [34] BETTINELLI P, AVOUAC J P, FLOUZAT M, et al. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements[J]. Journal of Geodesy, 2006, 80(8-11):567-589. [35] 杨强,党亚民.利用GPS速度场估算青藏高原地壳韧性层等效粘滞系数分布的研究[J].测绘学报, 2010, 39(5):497-502. YANG Qiang, DANG Yamin. A research about effective viscosity of Tibetan Plateau lithosphere viscoelastic ductile layer using GPS velocity fields[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):497-502. [36] 王琪,张培震,牛之俊,等.中国大陆现今地壳运动和构造变形[J].中国科学(D辑), 2001, 31(7):529-536. WANG Qi, ZHANG Peizhen, NIU Zhijun, et al. The crust movement and tectonic deformation of the Chinese mainland[J]. Science in China (Ser D), 2001, 31(7):529-536. [37] WANG Qi, ZHANG Peizhen, FREYMUELLER J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 2001, 294(5542):574-577. [38] ZHANG Peizhen, SHEN Zhengkang, WANG Min, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9):809-812. [39] 张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J].中国科学(D辑), 2003, 33(S1):12-20. ZHANG Peizhen, DENG Qidong, ZHANG Guomin, et al. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D:Earth Sciences, 2003, 33(S1):12-20. [40] GAN Weijun, ZHANG Peizhen, SHEN Zhengkang, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B8):B08416. [41] 梁诗明.基于GPS观测的青藏高原现今三维地壳运动研究[D].北京:中国地震局地质研究所, 2014. LIANG Shiming. Three-dimensional velocity field of preset-day crustal motion of the Tibetan Plateau inferred from GPS measurements[D]. Beijing:Institute of Geology, China Earthquake Administration, 2014. [42] GE Weipeng, MOLNAR P, SHEN Zhengkang, et al. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 2015, 42(13):5227-5235. [43] YI Shuang, FREYMUELLER J T, SUN Wenke. How fast is the middle-lower crust flowing in eastern Tibet?A constraint from geodetic observations[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(9):6903-6915. [44] 王林松,陈超,邹蓉,等.利用GPS与GRACE监测陆地水负荷导致的季节性水平形变:以喜马拉雅山地区为例[J].地球物理学报, 2014, 57(6):1792-1804. WANG Linsong, CHEN Chao, ZOU Rong, et al. Using GPS and GRACE to detect seasonal horizontal deformation caused by loading of terrestrial water:A case study in the Himalayas[J]. Chinese Journal of Geophysics, 2014, 57(6):1792-1804. [45] 段虎荣,康明哲,吴绍宇,等.利用GRACE时变重力场反演青藏高原的隆升速率[J].地球物理学报, 2020, 63(12):4345-4360. DUAN Hurong, KANG Mingzhe, WU Shaoyu, et al. Uplift rate of the Tibetan Plateau constrained by GRACE time-variable gravity field[J]. Chinese Journal of Geophysics, 2020, 63(12):4345-4360. [46] 盛传贞,甘卫军,梁诗明,等.滇西地区GPS时间序列中陆地水载荷形变干扰的GRACE分辨与剔除[J].地球物理学报, 2014, 57(1):42-52. SHENG Chuanzhen, GAN Weijun, LIANG Shiming, et al. Identification and elimination of non-tectonic crustal deformation caused by land water from GPS time series in the western Yunnan province based on GRACE observations[J]. Chinese Journal of Geophysics, 2014, 57(1):42-52. [47] YAO Chaolong, LUO Zhicai, HU Yueming, et al. Detecting droughts in southwest china from GPS vertical position displacements[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):50-58. DOI:10.11947/j.JGGS.2020.0305. [48] THATCHER W. Microplate model for the present-day deformation of Tibet[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B1):B01401. [49] THATCHER W. How the continents deform:the evidence from tectonic geodesy[J]. Annual Review of Earth and Planetary Sciences, 2009, 37:237-262. [50] 党亚民,杨强,梁诗明,等.川滇区域活动块体运动与应变特征地震影响分析[J].测绘学报, 2018, 47(5):559-566. DOI:10.11947/j.AGCS.2018.20160311. DANG Yamin, YANG Qiang, LIANG Shiming, et al. Block movement and strain characteristics effected by earthquake in Sichuan-Yunnan region[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):559-566. DOI:10.11947/j.AGCS.2018.20160311. [51] 邓起东,张培震,冉永康,等.中国活动构造基本特征[J].中国科学(D辑), 2002, 32(12):1020-1030. DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic characteristics of active tectonics of China[J]. Science in China Series D:Earth Sciences, 2002, 32(12):1020-1030. [52] 王敏,沈正康,牛之俊,等.现今中国大陆地壳运动与活动块体模型[J].中国科学(D辑), 33(S1):21-32. WANG Min, SHEN Zhengkang, NIU Zhijun, et al. Contemporary crustal deformation of the Chinese continent and tectonic block model[J]. Science in China Series D:Earth Sciences, 33(S1):21-32. [53] 张国民,马宏生,王辉,等.中国大陆活动地块边界带与强震活动[J].地球物理学报, 2005, 48(3):602-610. ZHANG Guomin, MA Hongsheng, WANG Hui, et al. Boundaries between active_tectonic blocks and strong earthquakes in the China mainland[J]. Chinese Journal of Geophysics, 2005, 48(3):602-610. [54] 程鹏飞,成英燕,秘金钟,等. CGCS2000板块模型构建[J].测绘学报, 2013, 42(2):159-167. CHENG Pengfei, CHENG Yingyan, BI Jinzhong, et al. CGCS2000 plate motion model[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):159-167. [55] 李海兵,潘家伟,孙知明,等.大陆构造变形与地震活动——以青藏高原为例[J].地质学报, 2021, 95(1):194-213. LI Haibing, PAN Jiawei, SUN Zhiming, et al. Continental tectonic deformation and seismic activity:a case study from the Tibetan Plateau[J]. Acta Geologica Sinica, 2021, 95(1):194-213. [56] 曹建玲,石耀霖,张怀,等.青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J].科学通报, 2009, 54(2):224-234. CAO Jianling, SHI Yaolin, ZHANG Huai, et al. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(2):224-234. |
[1] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[2] | YUAN Yunbin, HOU Pengyu, ZHANG Baocheng. GNSS undifferenced and uncombined data processing and PPP-RTK high-precision positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1225-1238. |
[3] | JIN Shuanggen, WANG Qisheng, SHI Qiqi. Parameters estimation and applications from single- to five-frequency multi-GNSS precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1239-1248. |
[4] | LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie. Review of GNSS precise orbit determination: status, challenges, and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1271-1293. |
[5] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[6] | SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. |
[7] | YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952. |
[8] | DENG Zhiguo, WANG Jungang, GE Maorong. The GBM rapid product and the improvement from undifferenced ambiguity resolution [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 544-555. |
[9] | WANG Jie, WANG Nazi, XU Tianhe, GAO Fan, HE Yunqiao. Sea level estimation using the combination of GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 201-211. |
[10] | CHEN Ruizhi, YU Baoguo, WANG Fuhong, GONG Xuewen, BAO Yachuan, WANG Lei, LIU Wanke, FU Wenju. Orbit determination and time synchronization of spatial information network combining sparse regional ground stations [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1211-1221. |
[11] | HE Xiufeng, ZHAN Wei, SHI Hongkai. A GNSS water vapor tomography method considering boundary signals and vertical constraint [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 853-862. |
[12] | SHAO Kai, ZHANG Houzhe, QIN Xianping, HUANG Zhiyong, YI Bin, GU Defeng. Precise absolute and relative orbit determination for distributed InSAR satellite system [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 580-588. |
[13] | PENG Zihan, GAO Chengfa, LIU Yongsheng, ZHANG Ruicheng, SHANG Rui. Variational mode decomposition method for estimation of GNSS data quality from a smartphone [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 475-486. |
[14] | ZHANG Wenyuan, ZHANG Shubi, ZHENG Nanshan, DING Nan, LIU Xin, MA Pengxu. Tightly coupled water vapor tomography algorithm for combining GNSS and MODIS signals [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 496-508. |
[15] | DANG Yamin, GUO Chunxi, JIANG Tao, ZHANG Qingtao, CHEN Bin, JIANG Guangwei. 2020 height measurement and determination of Mount Qomolangma [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 556-561. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||