[1] 杜文英, 陈能成, 袁赛. 传感网支持下的洪涝事件过程监测与准实时服务方法及验证[J]. 测绘学报, 2020, 49(2):191-201.DOI:10.11947/j.AGCS.2020.20180378. DU Wenying, CHEN Nengcheng, YUAN Sai. Flood events process detection and near realtime service based on sensor web[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2):191-201.DOI:10.11947/j.AGCS.2020.20180378. [2] YAO Chaolong, LUO Zhicai, HU Yueming, et al. Detecting droughts in Southwest China from GPS vertical position displacements[J].Journal of Geodesy and Geoinformation Science,2020,3(2):114. [3] YAN P, FANG Y, CHEN J, et al. Automated extraction for water bodies using new water index from Landsat 8 OLI images[J].Journal of Geodesy and Geoinformation Science,2023,6(1):59-75. [4] ZHAO Qing, PEPE A, DEVLIN A, et al. Impact of sea-level-rise and human activities in coastal regions:an overview[J].Journal of Geodesy and Geoinformation Science,2021,4(1):124-143. [5] IWAHASHI M, UDOMSIRI S. Water level detection from video with fir filtering[C]//Proceeding of the 16th International Conference on Computer Communications and Networks.Honolulu:IEEE, 2007:826-831. [6] 鲍江, 陶青川, 张鹏. 基于图像处理的水位线检测算法[J]. 水电能源科学, 2015, 33(4):96-99, 210. BAO Jiang, TAO Qingchuan, ZHANG Peng. Image processing based water level detection algorithm[J]. Water Resources and Power, 2015, 33(4):96-99, 210. [7] SUN Chuanmeng, XU Ruijia, WANG Chong, et al. Coal rock image recognition method based on improved CLBP and receptive field theory[J]. Deep Underground Science and Engineering, 2022, 1(2):165-173. [8] 孙传猛, 王燕平, 王冲, 等. 融合改进YOLOv3与三次样条插值的煤岩界面识别方法[J]. 采矿与岩层控制工程学报, 2022, 4(1):81-90. SUN Chuanmeng, WANG Yanping, WANG Chong, et al. Coal-rock interface identification method based on improved YOLOv3 and cubic spline interpolation[J]. Journal of Mining and Strata Control Engineering, 2022, 4(1):81-90. [9] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [10] 孙传猛,陈嘉欣,裴东兴,等.基于深度学习的恶劣战场环境图像恢复方法[J/OL].控制与决策,1-8[2024-02-23].https://doi.org/10.13195/j.kzyjc.2022.1684. SUN Chuanmeng, CHEN Jiaxin, PEI Dongxing, et al. A deep learning based approach for image recovery in harsh battlefield environments[J]. Control And Decision,1-8[2024-02-23].https://doi.org/10.13195/j.kzyjc.2022.1684. [11] 刘媛媛, 刘洪伟, 霍风霖, 等. 基于机器学习短历时暴雨时空分布规律研究[J].水利学报, 2019, 50(6):773-779. LIU Yuanyuan, LIU Hongwei, HUO Fenglin, et al. An application of machine learning on examining spatial and temporal distribution of short duration rainstorm[J]. Journal of Hydraulic Engineering, 2019, 50(6):773-779. [12] 鲍振鑫, 张建云, 王国庆, 等. 基于水文模型与机器学习集合模拟的水沙变异归因定量识别:以黄河中游窟野河流域为例[J]. 水科学进展, 2021, 32(4):485-496. BAO Zhenxin, ZHANG Jianyun, WANG Guoqing, et al. Quantitative assessment of the attribution of runoff and sediment changes based on hydrologic model and machine learning:a case study of the Kuye River in the Middle Yellow River Basin[J]. Advances in Water Science, 2021, 32(4):485-496. [13] 程淑红, 赵考鹏, 张仕军, 等. 基于U-net的水位线检测[J]. 计量学报, 2019, 40(3):361-366. CHENG Shuhong, ZHAO Kaopeng, ZHANG Shijun, et al. Water level detection based on U-net[J]. Acta Metrologica Sinica, 2019, 40(3):361-366. [14] 肖卓, 陶青川, 沈建军. 基于SSD目标检测的视频水位检测算法[J]. 现代计算机(专业版), 2019(9):60-64. XIAO Zhuo, TAO Qingchuan, SHEN Jianjun. A video water-level recognition based on SSD object detect network[J]. Modern Computer, 2019(9):60-64. [15] 廖赟, 段清, 刘俊晖, 等. 基于深度学习的水位线检测算法[J]. 计算机应用, 2020, 40(S1):274-278. LIAO Yun, DUAN Qing, LIU Junhui, et al.Water line detection algorithm based on deep learning[J].Journal of Computer Applications, 2020, 40(S1):274-278. [16] 王磊, 陈明恩, 孟凯凯, 等. 基于深度学习算法的水位识别方法研究[J]. 水利信息化, 2020(3):39-43, 56. WANG Lei,CHEN Mingen, MENG Kaikai, et al. Research on water level recognition method based on deep learning algorithms[J]. Water Resources Informatization, 2020,(3):39-43,56. [17] 夏平, 王峰, 雷帮军, 等. 基于超像素和图割算法的智能视觉水位识别[J]. 计算机仿真, 2021, 38(3):430-436, 441. XIA Ping, WANG Feng, LEI Bangjun, et al. Intelligent visual water level recognition algorithm based on super-pixel and graph cut segmentation[J]. Computer Simulation, 2021, 38(3):430-436, 441. [18] 李欣宇, 孙传猛, 魏宇, 等. 融合Transformer与残差通道注意力的恶劣场景水位智能检测方法[J]. 电子测量与仪器学报, 2023, 37(1):59-69. LI Xinyu, SUN Chuanmeng, WEI Yu,et al. Water level intelligent detection method based on fuse Transformer residual channel attention mechanism in harsh environments[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(1):59-69. [19] 张衎, 王剑平, 张果, 等. 图像法水位检测研究进展[J]. 电子测量技术, 2021, 44(13):104-113. ZHANG Kan, WANG Jianping, ZHANG Guo,et al. Review of image water level detection[J]. Electronic Measurement Technology, 2021, 44(13):104-113. [20] CHEN C, LIU M Y, TUZEL O, et al. RCNN for small object detection[C]//Proceedings of 2016 Asian Conference on Computer Vision. Cham:Springer, 2016:214230. [21] 崔晓宁, 王起才, 李盛, 等. 基于YOLOv5的双块式轨枕裂缝智能识别[J]. 铁道学报, 2022, 44(4):104-111. CUI Xiaoning, WANG Qicai, LI Sheng, et al. Intelligent recognition of cracks in double block sleeper based on YOLOv5[J]. Journal of the China Railway Society, 2022, 44(4):104-111. [22] 张娜, 戚旭磊, 包晓安, 等. 基于优化预测定位的单阶段目标检测算法[J]. 浙江大学学报(工学版), 2022, 56(4):783-794. ZHANG Na, QI Xulei, BAO Xiaoan, et al. Single-stage object detection algorithm based on optimizing position prediction[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(4):783-794. [23] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9):1904-1916. [24] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE, 2017. [25] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE, 2018. [26] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [27] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot MultiBox detector[C]//Proceedings of 2016 European Conference on Computer Vision. Cham:Springer, 2016. [28] REDMON J, FARHADI A. YOLOv3:an incremental improvement[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. [29] DU Xuwei, CHEN Dong, LIU Huajiang, et al. Real-time hand tracking based on YOLOv4 model and Kalman filter[J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(3):86-94. [30] HE Nanjun, FANG Leyuan, PLAZA A. Hybrid first and second order attention Unet for building segmentation in remote sensing images[J]. Science China Information Sciences, 2020, 63(4):140305. |