Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (6): 1037-1056.doi: 10.11947/j.AGCS.2024.20230440
• Smart Surveying and Mapping • Previous Articles Next Articles
Liming JIANG1,2(), Yi SHAO1,2, Zhiwei ZHOU1,2, Peifeng MA3, Teng WANG4
Received:
2023-10-07
Published:
2024-07-22
About author:
JIANG Liming (1976—), male, PhD, researcher, majors in theory, methods and applications of imaging geodesy. E-mail: jlm@apm.ac.cn
Supported by:
CLC Number:
Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056.
[1] | 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235. |
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005.DOI:10.11947/j.AGCS.2021.20210235. | |
[2] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. |
[3] | ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2):179-211. |
[4] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of 2014 International Conference on Neural Information Processing Systems. Montreal: ACM Press, 2014: 2672-2680. |
[5] | MA Lei, LIU Yu, ZHANG Xueliang, et al. Deep learning in remote sensing applications: a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177. |
[6] | CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756. |
[7] | PACIFICI F, DEL FRATE F, SOLIMINI C, et al. An innovative neural-net method to detect temporal changes in high-resolution optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(9):2940-2952. |
[8] | 龚健雅, 张觅, 胡翔云, 等. 智能遥感深度学习框架与模型设计[J]. 测绘学报, 2022, 51(4):475-487.DOI:10.11947/j.AGCS.2022.20220027. |
GONG Jianya, ZHANG Mi, HU Xiangyun, et al. The design of deep learning framework and model for intelligent remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4):475-487.DOI:10.11947/j.AGCS.2022.20220027. | |
[9] | 张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8):1068-1083.DOI:10.11947/j.AGCS.2021.20210079. |
ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1068-1083.DOI:10.11947/j.AGCS.2021.20210079. | |
[10] | 陶超, 阴紫薇, 朱庆, 等. 遥感影像智能解译:从监督学习到自监督学习[J]. 测绘学报, 2021, 50(8):1122-1134.DOI:10.11947/j.AGCS.2021.20210089. |
TAO Chao, YIN Ziwei, ZHU Qing, et al. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1122-1134.DOI:10.11947/j.AGCS.2021.20210089. | |
[11] | CHEN Sizhe, WANG Haipeng. SAR target recognition based on deep learning[C]//Proceedings of 2014 International Conference on Data Science and Advanced Analytics. Shanghai: IEEE, 2014: 541-547. |
[12] | PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):2196-2210. |
[13] | ZHU Xiaoxiang, MONTAZERI S, ALI M, et al. Deep learning meets SAR: concepts, models, pitfalls, and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4):143-172. |
[14] | XIE Huiming, WANG Shuang, LIU Kun, et al. Multilayer feature learning for polarimetric synthetic radar data classification[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 2818-2821. |
[15] | GONG Maoguo, ZHAO Jiaojiao, LIU Jia, et al. Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1):125-138. |
[16] | QIAN Kun, WANG Yuanyuan, SHI Yilei, et al. γ-Net: superresolving SAR tomographic inversion via deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-16. |
[17] | WANG Teng, ZHANG Qi, WU Zhipeng. A deep-learning-facilitated, detection-first strategy for operationally monitoring localized deformation with large-scale InSAR[J]. Remote Sensing, 2023, 15(9):2310. |
[18] | MUKHERJEE S, ZIMMER A, KOTTAYIL N K, et al. CNN-based InSAR denoising and coherence metric[C]//Proceedings of 2018 IEEE SENSORS. New Delhi: IEEE, 2018: 808-811. |
[19] | SICA F, GOBBI G, RIZZOLI P, et al. Φ-Net: deep residual learning for InSAR parameters estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5):3917-3941. |
[20] | SPOORTHI G E, SAI SUBRAHMANYAM GORTHI R K, GORTHI S. PhaseNet 2.0: phase unwrapping of noisy data based on deep learning approach[J]. IEEE Transactions on Image Processing, 2020, 29:4862-4872. |
[21] | WU Zhipeng, WANG Teng, WANG Yingjie, et al. Deep learning for the detection and phase unwrapping of mining-induced deformation in large-scale interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3121907. |
[22] | HU Jun, WU Wenqing, GUI Rong, et al. Deep learning-based homogeneous pixel selection for multitemporal SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3203975. |
[23] | TIWARI A, NARAYAN A B, DIKSHIT O. Deep learning networks for selection of measurement pixels in multi-temporal SAR interferometric processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:169-182. |
[24] | CHEN Yuxing, BRUZZONE L, JIANG Liming, et al. ARU-Net: reduction of atmospheric phase screen in SAR interferometry using attention-based deep residual U-Net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5780-5793. |
[25] | ZHAO Zhuoyi, WU Zherong, ZHENG Yi, et al. Recurrent neural networks for atmospheric noise removal from InSAR time series with missing values[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180:227-237. |
[26] | ANANTRASIRICHAI N, BIGGS J, ALBINO F, et al. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets[J]. Remote Sensing of Environment, 2019, 230:111179. |
[27] | ROUET-LEDUC B, JOLIVET R, DALAISON M, et al. Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning[J]. Nature Communications, 2021, 12:6480. |
[28] | LATTARI F, RUCCI A, MATTEUCCI M. A deep learning approach for change points detection in InSAR time series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3155969. |
[29] | MA Peifeng, ZHANG Fan, LIN Hui. Prediction of InSAR time-series deformation using deep convolutional neural networks[J]. Remote Sensing Letters, 2020, 11(2):137-145. |
[30] | BÜURGMANN R, ROSEN P A, FIELDING E J. Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:169-209. |
[31] | 程惠红, 姚宜斌, 赵倩, 等. 从国家自然科学基金项目资助探讨大地测量学的学科架构与发展[J]. 测绘学报. 2023, 52(4):523-535. DOI:10.11947/j.AGCS.2023.20220663. |
CHENG Huihong, YAO Yibin, ZHAO Qian, et al. Exploring the geodesy principle architecture and development from the perspective of granted NSFC projects[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4):523-535. DOI:10.11947/j.AGCS.2023.20220663. | |
[32] | 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. |
ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. | |
[33] | FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[C]//Proceedings of 1999 International Geoscience and Remote Sensing Symposium. Hamburg: IEEE, 1999. |
[34] | BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. |
[35] | FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. |
[36] | ANSARI H, DE ZAN F, BAMLER R. Sequential estimator: toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5637-5652. |
[37] | RAMBOUR C, BUDILLON A, JOHNSY A C, et al. From interferometric to tomographic SAR: a review of synthetic aperture radar tomography-processing techniques for scatterer unmixing in urban areas[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2):6-29. |
[1] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
[2] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
[3] | Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127. |
[4] | Bo KONG, Tinghua AI, Min YANG, Hao WU, Huafei YU, Tianyuan XIAO. Identification of loess landform types jointly affected by contour morphological knowledge and the graph neural network [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1154-1164. |
[5] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[6] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[7] | Canghai ZHOU, Zhen TIAN, Zhen SHI, Hayinaer TUOKAN. The characteristic of the Yadong-Gulu faults motion constraints by InSAR timeseries and GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 933-945. |
[8] | Jun ZHU, Wei PENG, Haiqiang FU, Man OU, Shancheng LEI, Shiping ZHANG. Large-scale TanDEM-X InSAR sub-canopy topography inversion under insufficient observation information [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 959-966. |
[9] | Zhi LIU, Shuyuan YANG, Zifan YU, Zhixi FENG, Quanwei GAO, Min WANG. Fast SAR autofocus based on convolutional neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 610-619. |
[10] | Yandong GAO, Yikun JIA, Shijin LI, Yu CHEN, Huaizhan LI, Nanshan ZHENG, Shubi ZHANG. The improved max-flow/min-cut weight algorithm for InSAR phase unwrapping [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 644-652. |
[11] | Huimin LIU, Chenwei ZHANG, Kaiqi CHEN, Min DENG, Chong PENG. Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 750-760. |
[12] | HE Yi, YANG Wang, ZHU Qing. An InSAR phase unwrapping method based on R2AU-Net [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 435-449. |
[13] | WANG Yuan, XU Huaping, LI Chunsheng, ZENG Guobing, LIU Aifang, GE Shiqi. Analysis of interferometric mapping accuracy for spaceborne distributed SAR dual-frequency alternative bistatic mode [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 463-472. |
[14] | YUE Jiawei, HUANG Qihuan, LIU Hui, MA Zhangfeng. A multi-baseline phase unwrapping method based on a discrete optimization framework [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 473-481. |
[15] | SUN Chuanmeng, WEI Yu, LI Xinyu, MA Tiehua, WU Zhibo. Intelligent detection method of image water level inversion for water level without water scale in complex scenes [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 558-568. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||