Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (12): 2244-2253.doi: 10.11947/j.AGCS.2024.20230454
• Intelligent Image Processing • Previous Articles Next Articles
Shiyan PANG1(
), Jingjing HAO1, Zhiqi ZUO2, Jingjing LAN1, Xiangyun HU3,4(
)
Received:2023-10-10
Online:2025-01-06
Published:2025-01-06
Contact:
Xiangyun HU
E-mail:pangsy@ccnu.edu.cn;huxy@whu.edu.cn
About author:PANG Shiyan (1987—), female, PhD, associate professor, majors in remote sensing image interpretation and deep learning applications. E-mail: pangsy@ccnu.edu.cn
Supported by:CLC Number:
Shiyan PANG, Jingjing HAO, Zhiqi ZUO, Jingjing LAN, Xiangyun HU. A high-resolution remote sensing images change detection method via the integration of dense connections and self-attention mechanisms[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2244-2253.
Tab. 1
Metrics of different networks on the WHU and LEVIR datasets"
| 模型 | WHU-CD | LEVIR-CD | CDD | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IoU | OA | Precision | Recall | F1值 | Kappa | IoU | OA | Precision | Recall | F1值 | Kappa | IoU | OA | Precision | Recall | F1值 | Kappa | |
| DTCDSCN | 82.19 | 99.31 | 92.70 | 87.87 | 90.22 | 89.86 | 79.90 | 98.86 | 89.04 | 88.61 | 88.82 | 88.23 | 86.15 | 98.22 | 94.08 | 91.08 | 92.56 | 91.55 |
| SNUNet | 79.09 | 99.17 | 90.68 | 86.08 | 88.32 | 87.89 | 82.16 | 98.97 | 94.83 | 86.01 | 90.21 | 85.76 | 88.13 | 98.47 | 93.99 | 93.39 | 93.69 | 92.82 |
| BIT | 81.29 | 99.26 | 90.66 | 88.71 | 89.68 | 89.29 | 82.63 | 98.99 | 93.88 | 87.33 | 90.49 | 89.95 | 89.19 | 98.62 | 95.12 | 93.47 | 94.29 | 93.50 |
| ChangeFormer | 76.28 | 99.07 | 92.11 | 81.62 | 86.55 | 86.07 | 78.21 | 98.78 | 89.74 | 85.89 | 87.77 | 87.13 | 84.53 | 98.00 | 94.99 | 88.47 | 91.62 | 90.48 |
| ChangerEx | 72.09 | 98.77 | 80.43 | 87.42 | 83.78 | 83.14 | 81.62 | 98.99 | 91.76 | 88.08 | 89.88 | 89.35 | 89.52 | 98.67 | 96.82 | 92.24 | 94.47 | 93.71 |
| TNUNet-CD | 85.44 | 99.44 | 93.61 | 90.74 | 92.15 | 91.86 | 84.15 | 99.13 | 92.10 | 90.70 | 91.40 | 90.94 | 94.61 | 99.33 | 97.97 | 96.50 | 97.23 | 96.85 |
| [1] | FANG S, LI K, SHAO J, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. |
| [2] | LIU W, JI X, LIU J, et al. A novel unsupervised change detection method with structure consistency and GFLICM based on UAV images[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 91-102. |
| [3] |
张祖勋, 姜慧伟, 庞世燕, 等. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070 |
|
ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. DOI:.
doi: 10.11947/j.AGCS.2022.20220070 |
|
| [4] | ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 4353-4361. |
| [5] | ZHAN Yang, FU Kun, YAN Menglong, et al. Change detection based on deep siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1845-1849. |
| [6] | DAUDT R C, LE SAUX B, BOULCH A. Fully convolutional siamese networks for change detection[C]//Proceedings of 2018 IEEE International Conference on Image Processing. Athens: IEEE, 2018: 4063-4067. |
| [7] | ZHANG Wuxia, LU Xiaoqiang. The spectral-spatial joint learning for change detection in multispectral imagery[J]. Remote Sensing, 2019, 11(3): 240. |
| [8] | CHEN Hao, LI Wenyuan, SHI Zhenwei. Adversarial instance augmentation for building change detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16. |
| [9] | PENG Daifeng, ZHANG Yongjun, GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382. |
| [10] | HUANG Gao, LIU Zhuang, VAN DER M L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708. |
| [11] | ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. |
| [12] |
王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202 |
|
WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 283-296. DOI:.
doi: 10.11947/j.AGCS.2023.20220202 |
|
| [13] |
梁哲恒, 黎宵, 邓鹏, 等. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. DOI:.
doi: 10.11947/j.AGCS.2022.20200540 |
|
LIANG Zheheng, LI Xiao, DENG Peng, et al. Remote sensing image change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. DOI:.
doi: 10.11947/j.AGCS.2022.20200540 |
|
| [14] | ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bitemporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200. |
| [15] | PENG Xueli, ZHONG Ruofei, LI Zhen, et al. Optical remote sensing image change detection based on attention mechanism and image difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(9): 7296-7307. |
| [16] | CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662-1684. |
| [17] | JIANG Huiwei, HU Xiangyun, LI Kun, et al. PGA-SiamNet: pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 484. |
| [18] | SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16. |
| [19] | LIU Yi, PANG Chao, ZHAN Zongqian, et al. Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(5): 811-815. |
| [20] | ZHANG Lin, HU Xiangyun, ZHANG Mi, et al. Object-level change detection with a dual correlation attention-guided detector[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177, 147-160. |
| [21] | CHEN Pan, ZHANG Bing, HONG Danfeng, et al. FCCDN: feature constraint network for VHR image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 101-119. |
| [22] | FANG Sheng, LI Kaiyu, LI Zhe. Changer: feature interaction is what you need for change detection[EB/OL]. [2023-09-01]. https://arxiv.org/abs/2209.08290v1. |
| [23] | CHEN Hao, QI Zipeng, SHI Zhenwei. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geos-cience and Remote Sensing, 2021, 60: 1-14. |
| [24] | BANDARA W G C, PATEL V M. A Transformer-based Siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumper: IEEE, 2022: 207-210. |
| [25] | ZHENG Zhuo, ZHONG Yanfei, TIAN Shiqi, et al. ChangeMask: deep multi-task Encoder-Transformer-Decoder architecture for semantic change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 228-239. |
| [26] | CHEN Zhanlong, ZHOU Yuan, WANG Bin, et al. EGDE-Net: a building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191, 203-222. |
| [27] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
| [28] | DENG Jia, DONG Wei, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255. |
| [29] | SELVARAJU R R, COGSWELL M, DAS A, et al. Gradcam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Jixian ZHANG, Haiyan GU, Huan NI, Haitao LI, Yi YANG, Shaopeng DING, Songman SUI. Deep learning methods for remote sensing intelligent change detection: evolution and development [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1347-1370. |
| [3] | Qing CHENG, Boxuan WANG, Hongyan ZHANG. DRformer: a progressive coupled multiscale CNN and condensed attention Transformer method for hyperspectral image super-resolution [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1230-1242. |
| [4] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [5] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [6] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [7] | Jialing LI, Ji QI, Weipeng LU, Chao TAO. Self-supervised learning based urban functional zone classification by integrating optical remote sensing image-OSM data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 154-164. |
| [8] | Liangxiong GONG, Xinghua LI, Yuanming CHENG, Xingyou ZHAO, Renping XIE, Honggen WANG. A lightweight remote sensing images change detection network utilizing spatio-temporal difference enhancement and adaptive feature fusion [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 136-153. |
| [9] | Tao XU, Yuanwei YANG, Xianjun GAO, Zhiwei WANG, Yue PAN, Shaohua LI, Lei XU, Yanjun WANG, Bo LIU, Jing YU, Fengmin WU, Haoyu SUN. Integrated graph convolution and multi-scale features for the overhead catenary system point cloud semantic segmentation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1624-1633. |
| [10] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
| [11] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [12] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [13] | Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211. |
| [14] | Jicheng WANG, Anmei GUO, Li SHEN, Tian LAN, Zhu XU, Zhilin LI. Multi-level contrastive learning for weakly supervised extraction of urban solid wastes dump from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1212-1223. |
| [15] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||