Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (3): 410-421.doi: 10.11947/j.AGCS.2025.20240293
• Geodesy and Navigation • Previous Articles Next Articles
Qingzhi ZHAO1(
), Duoduo JIANG1, Hongwu GUO2,3, Zufeng LI4, Chen LIU5,6, Yibin YAO7
Received:2024-07-16
Online:2025-04-11
Published:2025-04-11
About author:ZHAO Qingzhi (1989—), male, PhD, professor, majors in GNSS data processing and GNSS meteorology. E-mail: zhaoqingzhia@163.com
Supported by:CLC Number:
Qingzhi ZHAO, Duoduo JIANG, Hongwu GUO, Zufeng LI, Chen LIU, Yibin YAO. A general method for determining the key parameters of GNSS water vapor tomography modeling[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 410-421.
Tab. 1
The tomographic height, vertical and horizontal grid division of each scheme"
| 方案 | 层析高度/km | 垂直分层(由低到高)/km | 经纬度方向水平步长/(°) |
|---|---|---|---|
| 方案T1[ | 9.93 | 0.993、0.993、0.993、0.993、0.993、0.993、0.993、0.993、0.993、0.993 | 经度:0.06、0.06、0.06、0.06、0.06、0.06、0.06、0.06 纬度:0.06、0.06、0.06、0.06、0.06、0.06 |
| 方案T2[ | 8.50 | 0.4、0.4、0.4、0.4、0.4、0.5、0.5、0.5、0.5、0.6、0.6、0.6、0.7、1.0、1.0 | 经度:0.06、0.06、0.06、0.06、0.06、0.06、0.06、0.06 纬度:0.06、0.06、0.06、0.06、0.06、0.06 |
| 方案T3[ | 8.00 | 0.5、0.5、0.7、0.7、0.7、0.9、0.9、0.9、1.1、1.1 | 经度:0.06、0.06、0.06、0.06、0.06、0.06、0.06、0.06 纬度:0.06、0.06、0.06、0.06、0.06、0.06 |
| 方案G1 | 9.93 | 0.26、0.28、0.32、0.35、0.40、0.46、0.57、0.79、1.37、5.13 | 经度:0.08、0.07、0.05、0.04、0.04、0.05、0.07、0.08 纬度:0.09、0.06、0.03、0.03、0.06、0.09 |
| 方案G2 | 9.93 | 0.26、0.28、0.32、0.35、0.40、0.46、0.57、0.79、1.37、5.13 | 经度:0.08、0.07、0.05、0.04、0.04、0.05、0.07、0.08 纬度:0.1、0.05、0.03、0.03、0.05、0.1 |
| 方案G3 | 9.93 | 0.26、0.28、0.32、0.35、0.40、0.46、0.57、0.79、1.37、5.13 | 经度:0.09、0.06、0.05、0.04、0.04、0.05、0.06、0.09 纬度:0.09、0.06、0.03、0.03、0.06、0.09 |
| 方案G4 | 9.93 | 0.26、0.28、0.32、0.35、0.40、0.46、0.57、0.79、1.37、5.13 | 经度:0.09、0.06、0.05、0.04、0.04、0.05、0.06、0.09 纬度:0.1、0.05、0.03、0.03、0.05、0.1 |
| [1] |
张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1172-1191. DOI:.
doi: 10.11947/j.AGCS.2022.20220149 |
|
ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. DOI:.
doi: 10.11947/j.AGCS.2022.20220149 |
|
| [2] | MERRIKHPOUR M H, RAHIMZADEGAN M. Analysis of temporal and spatial variations of total precipitable water vapor in western Iran using radiosonde and MODIS measurements[J]. Journal of Applied Remote Sensing, 2019, 13(4): 044508. |
| [3] | ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. Capturing the signature of heavy rainfall events using the 2-d-/ 4-d water vapour information derived from GNSS measurement in Hong Kong[J/OL]. [2024-07-01]. https://doi.org/10.5194/angeo-2018-76. |
| [4] | TRZCINA E, ROHM W. Estimation of 3D wet refractivity by tomography, combining GNSS and NWP data: first results from assimilation of wet refractivity into NWP[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(720): 1034-1051. |
| [5] | BRAUN J, ROCKEN C, MEERTENS C, et al. Development of a water vapor tomography system using low cost L1 GPS receivers[C]//Proceedings of the 9th ARM Science Team Meeting. San Antonio: NSF, 1999. |
| [6] | FLORES A, RUFFINI G, RIUS A. 4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophysicae, 2000, 18(2): 223-234. |
| [7] | PERLER D, GEIGER A, HURTER F. 4D GPS water vapor tomography: new parameterized approaches[J]. Journal of Geodesy, 2011, 85(8): 539-550. |
| [8] | ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. Troposphere water vapour tomography: a horizontal parameterised approach[J]. Remote Sensing, 2018, 10(8): 1241. |
| [9] | ZHANG Wenyuan, ZHANG Shubi, MOELLER G, et al. An adaptive-degree layered function-based method to GNSS tropospheric tomography[J]. GPS Solutions, 2023, 27(2): 67. |
| [10] | BENEVIDES P, CATALÃO J, MIRANDA P. Experimental GNSS tomography study in Lisbon (Portugal)[J]. Física de la Tierra, 2014, 26: 65-79. |
| [11] | AO Yibin, ZHAO Qingzhi, ZHANG Bao. A method to improve the utilization of GNSS observation for water vapor tomography[J]. Annales Geophysicae, 2016, 34(1): 143-152. |
| [12] | YAO Yibin, ZHAO Qingzhi. Maximally using GPS observation for water vapor tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7185-7196. |
| [13] |
胡鹏, 黄观文, 张勤, 等. 顾及边界入射信号的多模水汽层析方法[J]. 测绘学报, 2020, 49(5): 557-568. DOI:.
doi: 10.11947/j.AGCS.2020.20190113 |
|
HU Peng, HUANG Guanwen, ZHANG Qin, et al. A multi-GNSS water vapor tomography method considering boundary incident signals[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 557-568. DOI:.
doi: 10.11947/j.AGCS.2020.20190113 |
|
| [14] | 赵庆志, 姚宜斌, 罗亦泳. 附加辅助层析区域提高射线利用率的水汽反演方法[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1203-1208,1222. |
| ZHAO Qingzhi, YAO Yibin, LUO Yiyong. A method to improve the utilization of observation for water vapor tomography by adding assisted tomographic area[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1203-1208,1222. | |
| [15] |
赵庆志, 姚宜斌, 姚顽强. 顾及层析区域外测站的GNSS水汽层析建模方法[J]. 测绘学报, 2021, 50(3): 285-294. DOI:.
doi: 10.11947/j.AGCS.2021.20200111 |
|
ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. A method to establish the tomography model considering the data of GNSS stations outside the research area[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 285-294. DOI:.
doi: 10.11947/j.AGCS.2021.20200111 |
|
| [16] | LIU Shangyi, ZHANG Kefei, WU Suqin, et al. An improved GNSS tropospheric tomographic model with an extended region and combining virtual signals[J]. Atmospheric Research, 2023, 287: 106703. |
| [17] | SHANGGUAN Ming, DANG Meng, CHENG Xu. Multi-source water vapor tomography based on ray-tracing technique[C]//Proceedings of 2023 EGU General Assembly Conference Abstracts. Vienna: EGU, 2023. |
| [18] | 宋淑丽, 朱文耀, 丁金才, 等. 上海GPS综合应用网对可降水汽量的实时监测及其改进数值预报初始场的试验[J]. 地球物理学报, 2004, 47(4): 631-638. |
| SONG Shuli, ZHU Wenyao, DING Jincai, et al. Real time monitoring of PWV from SGCAN and its application test in numerical weather forecast[J]. Chinese Journal of Geophysics, 2004, 47(4): 631-638. | |
| [19] | 于胜杰, 柳林涛. 利用选权拟合法进行GPS水汽层析解算[J]. 武汉大学学报(信息科学版), 2012, 37(2): 183-186. |
| YU Shengjie, LIU Lintao. Application of fitting method by selection of the parameter weights on GPS water vapor tomography[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 183-186. | |
| [20] | GUO Jiming, YANG Fei, SHI Junbo, et al. An optimal weighting method of global positioning system (GPS) troposphere tomography[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12): 5880-5887. |
| [21] | ZHANG Bao, FAN Qingbiao, YAO Yibin, et al. An improved tomography approach based on adaptive smoothing and ground meteorological observations[J]. Remote Sensing, 2017, 9(9): 886. |
| [22] | ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. A troposphere tomography method considering the weighting of input information[J]. Annales Geophysicae, 2017, 35(6): 1327-1340. |
| [23] | CAO Yunchang, CHEN Yongqi, LI Pingwha. Wet refractivity tomography with an improved Kalman-filter method[J]. Advances in Atmospheric Sciences, 2006, 23(5): 693-699. |
| [24] | HIRAHARA K. Local GPS tropospheric tomography[J]. Earth, Planets and Space, 2000, 52(11): 935-939. |
| [25] | ZHAO Qingzhi, LI Zufeng, YAO Wanqiang, et al. An improved ridge estimation (IRE) method for troposphere water vapor tomography[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 207: 105366. |
| [26] | YANG Fei, GUO Jiming, SHI Junbo, et al. A GPS water vapour tomography method based on a genetic algorithm[J]. Atmospheric Measurement Techniques, 2020, 13(1): 355-371. |
| [27] | SORKHABI O M, DJAMOUR Y. 4D modeling of precipitable water vapor to assess flood forecasting by using GPS signals[J]. Natural Hazards, 2024, 120(1): 181-195. |
| [28] | 王维, 王解先. 基于代数重构技术的对流层水汽层析[J]. 计算机应用, 2011, 31(11): 3149-3151. |
| WANG Wei, WANG Jiexian. Ground-based GPS water vapor tomography based on algebraic reconstruction technique[J]. Journal of Computer Applications, 2011, 31(11): 3149-3151. | |
| [29] | ZHANG Weixing, LOU Yidong, LIU Wenxuan, et al. Rapid troposphere tomography using adaptive simultaneous iterative reconstruction technique[J]. Journal of Geodesy, 2020, 94(8): 76. |
| [30] | 张文渊, 张书毕, 左都美, 等. GNSS水汽层析的自适应代数重构算法[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1318-1327. |
| ZHANG Wenyuan, ZHANG Shubi, ZUO Dumei, et al. Adaptive algebraic reconstruction algorithms for GNSS water vapor tomography[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1318-1327. | |
| [31] | LIU Shangyi, ZHANG Kefei, WU Suqin, et al. A two-step projected iterative algorithm for tropospheric water vapor tomography[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5999-6015. |
| [32] | 夏朋飞, 叶世榕. 一种基于组合重构算法的对流层层析技术[J]. 大地测量与地球动力学, 2017, 37(9): 928-932. |
| XIA Pengfei, YE Shirong. A troposphere tomography technique based on combined reconstruction algorithm[J]. Journal of Geodesy and Geodynamics, 2017, 37(9): 928-932. | |
| [33] | TROLLER M, BÜRKI B, COCARD M, et al. 3D refractivity field from GPS double difference tomography[J]. Geophysical Research Letters, 2002, 29(24): 2149. |
| [34] | 赵庆志, 姚宜斌, 辛林洋. 融合ECMWF格网数据的水汽层析精化方法[J]. 武汉大学学报(信息科学版), 2021, 46(8): 1131-1138. |
| ZHAO Qingzhi, YAO Yibin, XIN Linyang. A method to sophisticate the water vapor tomography model by combining the ECMWF grid data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1131-1138. | |
| [35] | MIRANDA P M A, MATEUS P. Improved GNSS water vapor tomography with modified mapping functions[J]. Geophysical Research Letters, 2022, 49(18): e2022GL100140. |
| [36] | ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. An optimal tropospheric tomography approach with the support of an auxiliary area[J]. Annales Geophysicae, 2018, 36(4): 1037-1046. |
| [37] |
王维, 宋淑丽, 王解先, 等. 长三角地区多模GNSS斜路径观测分布及水汽仿真层析[J]. 测绘学报, 2016, 45(2): 164-169,177. DOI:.
doi: 10.11947/j.AGCS.2016.20140648 |
|
WANG Wei, SONG Shuli, WANG Jiexian, et al. Distribution analysis of multi GNSS slant delays and simulated water vapor tomography in Yangtze River Delta[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 164-169,177. DOI:.
doi: 10.11947/j.AGCS.2016.20140648 |
|
| [38] | 张文渊, 张书毕, 郑南山, 等. 联合GNSS/RS多源数据反演三维大气水汽分布研究[J]. 地球物理学报, 2022, 65(6): 1951-1964. |
| ZHANG Wenyuan, ZHANG Shubi, ZHENG Nanshan, et al. Study on the retrieval of 3D atmospheric water vapor distribution using GNSS and RS multi-source data[J]. Chinese Journal of Geophysics, 2022, 65(6): 1951-1964. | |
| [39] | 姚秀光, 郭金城, 严梦琪, 等. 基于地基GNSS观测数据的贵州高原地区水汽层析精度分析[J]. 大地测量与地球动力学, 2023, 43(11): 1162-1166. |
| YAO Xiuguang, GUO Jincheng, YAN Mengqi, et al. Accuracy analysis of water vapor tomography based on ground-based GNSS observation data in Guizhou Plateau[J]. Journal of Geodesy and Geodynamics, 2023, 43(11): 1162-1166. | |
| [40] | 赵庆志. 地基GNSS水汽反演关键技术研究及其应用[D]. 武汉: 武汉大学, 2017. |
| ZHAO Qingzhi. Studies on the key technologies in water vapor inversion using ground-based GNSS and its applications[D]. Wuhan: Wuhan University, 2017. | |
| [41] | CHEN Biyan, LIU Zhizhao. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model[J]. Journal of Geodesy, 2014, 88(7): 691-703. |
| [42] | CHAROENPHON C, SATIRAPOD C. Improving the accuracy of real-time precipitable water vapour using country-wide meteorological model with precise point positioning in Thailand[J]. Journal of Spatial Science, 2022, 67(2): 313-329. |
| [1] | Xuexi LIU, Shouqing ZHU, Guo CHEN, Kefei ZHANG, Nanshan ZHENG, Jingxuan LIU. Consistency analysis of GNSS precise orbit and clock products based on globally unified coordinate frame [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 432-447. |
| [2] | Yangyang LU, Huizhong ZHU, Bo LI, Jun LI, Aigong XU. PPP algorithm for multi-frequency GPS/Galileo/BDS-3 with IFCB time-varying characteristic constraints [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 233-247. |
| [3] | Jixing ZHU, Shuqiang XUE, Baojin LI, Zhen XIAO, Kaiming WANG. GNSS-acoustic inversion of double-exponential temperature profile [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 286-296. |
| [4] | Fei YANG, Yingying WANG, Zhicai LI, Boyao YU, Junli WU, Yunchang CAO, Shu ZHANG. Analysis of heavy rainstorm in Beijing in 2023 based on GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 14-25. |
| [5] | Yarong LUO, Chi GUO, Wei OUYANG, Jingnan LIU. GNSS/SINS integrated navigation method considering the geometric property of biases state [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 26-39. |
| [6] | Zhengyang CAO, Huazu ZHANG, Zilong ZHAO, Heng QI, Luliang TANG. Crowdsourcing extraction method for refined lane-level road information by integrating public on-board image with GNSS trajectory [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 194-205. |
| [7] | Dongsheng ZHAO, Xueli ZHANG, Shuanglei CUI, Qianxin WANG, Guanqing LI, Longjiang LI, Chendong LI, Kefei ZHANG. Accuracy assessment of ionospheric scintillation monitoring in high-latitude regions of the northern hemisphere utilizing geodetic GNSS receivers based on ROTI and AATR [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1251-1264. |
| [8] | Tieding LU, Zhen LI. Prediction and interpolation of GNSS vertical time series based on the AdaBoost method considering geophysical effects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1077-1085. |
| [9] | Hao XU, Qin ZHANG, Li WANG, Bao SHU, Yuan DU, Guanwen HUANG. Intelligent site selection method for UAV-dropped GNSS landslide monitoring equipment [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1140-1153. |
| [10] | Xinghai YANG, Linguo YUAN, Zhongshan JIANG, Miao TANG. Joint inversion of GNSS and GRACE/GRACE-FO data for terrestrial water storage changes in Southwest China [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 813-822. |
| [11] | Canghai ZHOU, Zhen TIAN, Zhen SHI, Hayinaer TUOKAN. The characteristic of the Yadong-Gulu faults motion constraints by InSAR timeseries and GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 933-945. |
| [12] | Yiyong LUO, Dawei WU. Analysis of ionospheric disturbance induced by Tonga volcanic eruption on January 15, 2022 based on GPS TEC [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 629-643. |
| [13] | Tian HE, Guojie MENG, Weiwei WU, Xiaoning SU, Guoqiang ZHAO, Congmin WEI, Zhihua DONG. Preliminary analysis to positioning precision and crustal movement of BDS-3 data recorded by the China seismic experiment site [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 653-665. |
| [14] | HU Chao, WANG Qianxin. GNSS ultra-rapid orbit and clock offset estimation method with the aid of the constraint of BDS-3 onboard clock [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 413-424. |
| [15] | MU Mengxue, ZHAO Long. A distributed GNSS/SINS/odometer resilient fusion navigation method for land vehicle [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 425-434. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||