测绘学报 ›› 2014, Vol. 43 ›› Issue (8): 803-807.

• 学术论文 • 上一篇    下一篇

径向基函数神经网络在GPS卫星钟差预报中的应用

王国成1,柳林涛2,徐爱功3,苏晓庆2,梁星辉2   

  1. 1. 中科院测量与地球物理研究所
    2. 中国科学院测量与地球物理研究所
    3. 辽宁工程技术大学
  • 收稿日期:2014-01-06 修回日期:2014-05-12 出版日期:2014-08-20 发布日期:2014-08-27
  • 通讯作者: 柳林涛 E-mail:llt@asch.whigg.ac.cn
  • 基金资助:

    现代大地测量及其地学应用的研究

The application of Radial basis function neural network in the GPS satellite clock bias prediction

  • Received:2014-01-06 Revised:2014-05-12 Online:2014-08-20 Published:2014-08-27

摘要:

GPS卫星钟在空中很容易受到诸多因素的影响,导致其钟差行为很难用线性模型,二次多项式模型,灰色模型等现有模型进行描述和实现可靠的高精度预报。本文利用径向基函数神经网络对几颗GPS卫星钟差连续进行了五分钟、一小时和一天的预报,分别取得了均方根误差优于0.4ns,0.5ns和1ns的预报精度,证明了文中径向基网络结构在钟差预报方面的可靠性。

关键词: GPS卫星钟差, 径向基函数神经网络

Abstract:

For satellite atomic clocks can be easily influenced by various factors in space, the clock behaviour are not sufficiently described and achieved a reliable high-precision prediction by the existed model, such as a linear model, a quadratic polynomial model, grey model and so on. Radial basis function neural network was used to the continuous prediction of many GPS satellite clock bais with five minutes, one hour and one day in this paper, the root mean square error was better than 0.4ns, 0.5ns and 1ns, respectively, these prove the reliability of the radial basis network structure on the clock error forecasting in this paper.

中图分类号: