测绘学报 ›› 2025, Vol. 54 ›› Issue (11): 2081-2096.doi: 10.11947/j.AGCS.2025.20250202

• 地图学与地理信息 • 上一篇    

基于时空因果推断的下一个兴趣点推荐

叶欣宇1,2(), 徐胜华1(), 刘纪平1, 陈虹宇1,2, 王琢璐3, 李维炼2,4   

  1. 1.中国测绘科学研究院,北京 100036
    2.西南交通大学地球科学与工程学院,四川 成都 611756
    3.辽宁工程技术大学测绘与地理科学学院,辽宁 阜新 123000
    4.测绘科学与地球空间信息技术自然资源部重点试验室,北京 100036
  • 收稿日期:2025-06-12 修回日期:2025-10-30 发布日期:2025-12-15
  • 通讯作者: 徐胜华 E-mail:yxy01@my.swjtu.edu.cn;xushh@casm.ac.cn
  • 作者简介:叶欣宇(2001—),男,硕士生,研究方向为兴趣点推荐。E-mail:yxy01@my.swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(42371478);地理信息工程国家重点实验室、测绘科学与地球空间信息技术自然资源部重点实验室联合资助基金(2024-02-09)

Next point of interest recommendation based on spatio-temporal causal inference

Xinyu YE1,2(), Shenghua XU1(), Jiping LIU1, Hongyu CHEN1,2, Zhuolu WANG3, Weilian LI2,4   

  1. 1.Chinese Academy of Surveying and Mapping, Beijing 100036, China
    2.Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
    3.School of Geomatics, Liaoning Technical University, Fuxin 123000, China
    4.Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR, Beijing 100036, China
  • Received:2025-06-12 Revised:2025-10-30 Published:2025-12-15
  • Contact: Shenghua XU E-mail:yxy01@my.swjtu.edu.cn;xushh@casm.ac.cn
  • About author:YE Xinyu (2001—), male, postgraduate, majors in POI recommendation. E-mail: yxy01@my.swjtu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42371478);The Foundation of State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR, CASM(2024-02-09)

摘要:

下一个兴趣点推荐是基于位置的社交网络的一项重要服务,在用户个性化位置推荐、商业优化布局等领域具有显著应用价值。当前推荐系统主要基于深度学习方法而未采用因果推断框架,导致其倾向于学习均质化的相关性,难以有效消除时空数据中混杂因子的干扰,使得模型推荐性能受限。针对上述问题,本文提出基于时空因果推断的下一个兴趣点推荐模型。首先,为了将时空数据融入因果推断框架,分别基于时序特征、空间特征对序列信息和时空上下文信息嵌入编码,生成时空角度上的用户与兴趣点的特征表示。然后,基于前门调整和反事实推理提出因果推断模块,通过识别特征变量之间的因果效应,提取具有用户差异的用户时空状态,有效缓解了时空数据中混杂因子的影响。最后,处理用户多时段的时空状态,预测用户访问各个兴趣点的概率,实现下一个兴趣点推荐。在两个真实数据集上进行了试验分析,与最优的基线模型相比,本文方法的首项准确率和平均倒数排名在纽约数据集上分别提升了37.60%和22.72%,在东京数据集上分别提升了32.84%和20.63%,证明了本文方法的有效性和先进性。

关键词: 下一个兴趣点推荐, 时空上下文信息, 因果推断, 混杂因子

Abstract:

The next point of interest (POI) recommendation is a vital service within location-based social networks, demonstrating substantial application potential in domains such as personalized location recommendation for users and layout optimization for business. However, current recommendation systems predominantly leverage deep learning approaches without incorporating causal inference frameworks. This limitation results in a tendency to learn homogenized correlations, which renders the systems incapable of effectively mitigating the influence from confounding factors inherent in spatio-temporal data. Consequently, the recommendation performance of these models is significantly constrained. To address the mentioned issues, this paper proposes spatio-temporal causal inference network (STCIN), a next POI recommendation method based on spatio-temporal causal inference. First, to integrate spatio-temporal data into the causal inference framework, we design a spatio-temporal correlation embedding module. This module separately encodes sequential information and spatio-temporal contextual information through temporal feature-based and spatial feature-based embedding operations, generating user and POI feature representations from a spatio-temporal perspective. Next, we propose a causal-inference module based on front-door criterion and counterfactual reasoning. It discerns the causal effects among feature variables, and distills users' spatio-temporal states that capture individual heterogeneity, to alleviate the influence of confounding factors within spatio-temporal data. Finally, the model processes multi-period spatio-temporal states, estimating the probability that a user will visit each candidate POI, to achieve next POI recommendation. Extensive experiments conducted on two real-world datasets demonstrate that, compared to the best baseline model, the STCIN improves accuracy and mean reciprocal rank by 37.60% and 22.72% on New York dataset, and by 32.84% and 20.63% on Tokyo dataset. These results substantiate the effectiveness and superiority of the proposed STCIN model.

Key words: next POI recommendation, spatio-temporal context information, causal inference, confounding factor

中图分类号: