[1] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification:benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883. [2] 钱晓亮, 李佳, 程塨, 等. 特征提取策略对高分辨率遥感图像场景分类性能影响的评估[J]. 遥感学报, 2018, 22(5):758-776. QIAN Xiaoliang, LI Jia, CHENG Gong, et al. Evaluation of the effect of feature extraction strategy on the performance of high-resolution remote sensing image scene classification[J]. Journal of Remote Sensing, 2018, 22(5):758-776. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. [4] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:1-9. [5] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778. [6] 郑卓, 方芳, 刘袁缘, 等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. [7] HU Fan, XIA Guisong, HU Jingwen, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707. [8] CHENG Gong, YANG Ceyuan, YAO Xiwen, et al. When deep learning meets metric learning:remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5):2811-2821. [9] LIU Yishu, HUANG Chao. Scene classification via triplet networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1):220-237. [10] BAO Jiangfeng, CHI Mingmin, BENEDIKTSSON J A. Spectral derivative features for classification of hyperspectral remote sensing images:experimental evaluation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):594-601. [11] JIAO Hongzan, ZHONG Yanfei, ZHANG Liangpei. Artificial DNA computing-based spectral encoding and matching algorithm for hyperspectral remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):4085-4104. [12] FRANKLIN S E, HALL R J, MOSKAL L M, et al. Incorporating texture into classification of forest species composition from airborne multispectral images[J]. International Journal of Remote Sensing, 2000, 21(1):61-79. [13] CLAUSI D A, DENG Huang. Design-based texture feature fusion using Gabor filters and co-occurrence probabilities[J]. IEEE Transactions on Image Processing, 2005, 14(7):925-936. [14] ZHANG Liangpei, HUANG Xin, HUANG Bo, et al. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2950-2961. [15] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. New York:ACM, 2010:270-279. [16] CHEN Shizhi, TIAN Yingli. Pyramid of spatial relatons for scene-level land use classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(4):1947-1957. [17] ZHAO Lijun, TANG Ping, HUO Lianzhi. Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 7(12):4620-4631. [18] LIENOU M, MAITRE H, DATCU M. Semantic annotation of satellite images using latent dirichlet allocation[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1):28-32. [19] ZHONG Yanfei, ZHU Qiqi, ZHANG Liangpei. Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11):6207-6222. [20] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [21] LUUS F P S, SALMON B P, VAN DEN BERGH F, et al. Multiview deep learning for land-use classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2448-2452. [22] ZHANG Fan, DU Bo, ZHANG Liangpei. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1793-1802. [23] WU Hang, LIU Baozhen, SU Weihua, et al. Deep filter banks for land-use scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1895-1899. [24] ZENG Dan, CHEN Shuaijun, CHEN Boyang, et al. Improving remote sensing scene classification by integrating global-context and local-object features[J]. Remote Sensing, 2018, 10(5):734. [25] XIA Guisong, HU Jingwen, HU Fan, et al. AID:A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3965-3981. [26] YE Lihua, WANG Lei, SUN Yaxin, et al. Aerial scene classification via an ensemble extreme learning machine classifier based on discriminative hybrid convolutional neural networks features[J]. International Journal of Remote Sensing, 2018, 40(7):2759-2783. [27] 许夙晖, 慕晓冬, 赵鹏, 等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016, 45(7):834-840. DOI:10.11947/j.AGCS.2016.20150623. XU Suhui, MU Xiaodong, ZHAO Peng, et al. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):834-840. DOI:10.11947/j.AGCS.2016.20150623. [28] YE Lihua, WANG Lei, SUN Yaxin, et al. Parallel multi-stage features fusion of deep convolutional neural networks for aerial scene classification[J]. Remote Sensing Letters, 2018, 9(3):294-303. [29] WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands:Springer, 2016:499-515. [30] BIAN Xiaoyong, CHEN Chen, TIAN Long, et al. Fusing local and global features for high-resolution scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6):2889-2901. |