[1] 高俊. 图到用时方恨少, 重绘河山待后生——《测绘学报》60年纪念与前瞻[J]. 测绘学报, 2017, 46(10):1219-1225. DOI:10.11947/j.AGCS.2017.20170503. GAO Jun. The 60 anniversary and prospect of acta geodaetica et cartographica sinica[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1219-1225. DOI:10.11947/j.AGCS.2017.20170503. [2] 程传奇, 郝向阳, 李建胜, 等. 移动机器人视觉动态定位的稳健高斯混合模型[J]. 测绘学报, 2018, 47(11):1446-1456. DOI:10.11947/j.AGCS.2018.20170649. CHENG Chuanqi, HAO Xiangyang, LI Jiansheng, et al. Robust Gaussian mixture model for mobile robots' vision-based kinematical localization[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11):1446-1456. DOI:10.11947/j.AGCS.2018.20170649. [3] 高翔, 张涛, 刘毅, 等. 视觉SLAM十四讲:从理论到实践[M]. 北京:电子工业出版社, 2017. GAO Xiang, ZHANG Tao, LIU Yi, et al. 14 lectures on visual SLAM:from theory to practice[M]. Beijing:Publishing House of Electronics Industry, 2017. [4] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016. [5] THRUN S, BURGARD W, FOX D. Probabilistic robotics[M]. Cambridge:The MIT Press, 2006. [6] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridge:Cambridge University Press, 2004. [7] 张晓东. 可量测影像与GPS/IMU融合高精度定位定姿方法研究[D]. 郑州:信息工程大学, 2013. ZHANG Xiaodong. Research on high precision position and orientation method based on digital measurable image and GPS/IMU integration[D]. Zhengzhou:Information Engineering University, 2013. [8] 程传奇. 非结构场景下移动机器人自主导航关键技术研究[D]. 郑州:信息工程大学, 2018. CHENG Chuanqi. Research on the key technologies of autonomous navigation for mobile robots in unstructured environments[D]. Zhengzhou:Information Engineering University, 2018. [9] 陈驰, 杨必胜, 田茂, 等. 车载MMS激光点云与序列全景影像自动配准方法[J]. 测绘学报, 2018, 47(2):215-224. DOI:10.11947/j.AGCS.2018.20170520. CHEN Chi, YANG Bisheng, TIAN Mao, et al. Automatic registration of vehicle-borne mobile mapping laser point cloud and sequent panoramas[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):215-224. DOI:10.11947/j.AGCS.2018.20170520. [10] 魏崇阳. 城市环境中基于三维特征点云的建图与定位技术研究[D]. 长沙:国防科学技术大学, 2016. WEI Chongyang. 3D feature point clouds-based research on mapping and localization in urban environments[D]. Changsha:National University of Defense Technology, 2016. [11] NISTER D, NARODITSKY O, BERGEN J. Visual odometry[C]//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA:IEEE, 2004. [12] SCARAMUZZA D, FRAUNDORFER F. Visual odometry Part I:the first 30 years and fundamentals[J]. IEEE Robotics and Automation Magazine, 2011, 18(4):80-92. [13] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM:a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5):1147-1163. [14] FORSTER C, ZHANG Zichao, GASSNER M, et al. SVO:semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics, 2017, 33(2):249-265. [15] PIZZOLI M, FORSTER C, SCARAMUZZA D. REMODE:Probabilistic, monocular dense reconstruction in real time[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China:IEEE, 2014:2609-2616. [16] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM:dense tracking and mapping in real-time[C]//Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:2320-2327. [17] ENGEL J, SCHÖPS T, CREMERS D. LSD-SLAM:Large-scale direct monocular SLAM[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:834-849. [18] ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3):611-625. [19] BADINO H, KANADE T. A head-wearable short-baseline stereo system for the simultaneous estimation of structure and motion[C]//Proceedings of the IAPR Conference on Machine Vision Application. Nara, Japan, 2011:185-189. [20] KITT B, GEIGER A, LATEGAHN H. Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme[C]//Proceedings of 2010 IEEE Intelligent Vehicles Symposium. San Diego, CA, USA:IEEE, 2010. [21] STEIN G P, MANO O, SHASHUA A. A robust method for computing vehicle ego-motion[C]//Proceedings of the 2000 IEEE Intelligent Vehicles Symposium Dearborn, MI, USA:IEEE, 2000. [22] SCARAMUZZA D, FRAUNDORFER F, SIEGWART R. Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE, 2009. [23] BUCZKO M, WILLERT V. Flow-decoupled normalized reprojection error for visual odometry[C]//Proceedings of the 19th IEEE International Conference on Intelligent Transportation Systems. Rio de Janeiro, Brazil:IEEE, 2016:1161-1167. [24] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012. [25] 章毓晋. 计算机视觉教程[M]. 北京:人民邮电出版社, 2011. ZHANG Yujin. A course of computer vision[M]. Beijing:Posts & Telecom Press, 2011. [26] MALIK J. Dynamic perspective[EB/OL].[2015-05-16]. http://www-inst.eecs.berkeley.edu/~cs280/sp15/lectures/4.pdf. [27] SABATINI S, CORNO M, FIORENTI S, et al. Vision-based pole-like obstacle detection and localization for urban mobile robots[C]//Proceedings of 2018 IEEE Conference on Intelligent Vehicles Symposium. Changshu, China:IEEE, 2018. |