[1] ZHANG Liqiang, LI Zhuqiang, LI Anjian, et al. Large-scale urban point cloud labeling and reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018(138):86-100. [2] JARZBEK-RYCHARD M, MAAS H G. Geometric refinement of ALS-data derived building models using monoscopic aerial images[J]. Remote Sensing, 2017, 9(3):282. [3] 杨俊涛, 康志忠. 多尺度特征和马尔可夫随机场模型的电力线场景点云分类法[J]. 测绘学报, 2018, 47(2):188-197. DOI:10.11947/j.AGCS.2018.20170556. YANG Juntao, KANG Zhizhong. Multi-scale features and markov random field model for powerline scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):188-197. DOI:10.11947/j.AGCS.2018.20170556. [4] 张继贤, 段敏燕, 林祥国, 等. 激光雷达点云电力线三维重建模型的对比与分析[J]. 武汉大学学报(信息科学版), 2017, 42(11):1565-1772. ZHANG Jixian, DUAN Minyan, LIN Xiangguo, et al. Comparison and analysis of models for 3D power line reconstruction using LiDAR point cloud[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1565-1772. [5] 王丹菂, 徐青, 邢帅, 等. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8):1148-1159. DOI:10.11947/j.AGCS.2018.20170466. WANG Dandi, XU Qing, XING Shuai, et al. A coarse-to-fine signal detection method for airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8):1148-1159. DOI:10.11947/j.AGCS.2018.20170466. [6] WANG Cheng, NIE Sheng, XI Xiaohuan, et al. Estimating the biomass of maize with hyperspectral and LiDAR data[J]. Remote Sensing, 2017, 9(1):11. [7] 谢瑞, 程效军, 管海燕. 机载激光扫描与航空影像的融合分类与精度分析[J]. 同济大学学报(自然科学版), 2013, 41(4):607-613. XIE Rui, CHENG Xiaojun, GUAN Haiyan, Classification and accuracy analysis of LiDAR and aerial images[J]. Journal of Tongji University (Natural Science), 2013, 41(4):607-613. [8] 熊艳, 高仁强, 徐战亚. 机载LiDAR点云数据降维与分类的随机森林方法[J]. 测绘学报, 2018, 47(4):508-518. DOI:10.11947/j.AGCS.2018.20170417. XIONG Yan, GAO Renqiang, XU Zhanya. Random forest method for dimension reduction and point cloud classification based on airborne LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4):508-518. DOI:10.11947/j.AGCS.2018.20170417. [9] ZHU Qing, LI Yuan, HU Ho, et al. Robust point cloud classification based on multi-level semantic relationships for urban scenes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017(129):86-102. [10] 张继贤, 林祥国, 梁欣廉. 点云信息提取研究进展和展望[J]. 测绘学报, 2017, 46(10):1460-1469. DOI:10.11947/j.AGCS.2017.20170345. ZHANG Jixian, LIN Xiangguo, LIANG Xinlian. Advances and prospects of information extraction from point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1460-1469. DOI:10.11947/j.AGCS.2017.20170345. [11] 潘锁艳, 管海燕. 机载多光谱LiDAR数据的地物分类方法[J]. 测绘学报, 2018, 47(2):198-207. DOI:10.11947/j.AGCS.2018.20170512. PAN Suoyan, GUAN Haiyan. Object classification using airborne multispectral LiDAR data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):198-207. DOI:10.11947/j.AGCS.2018.20170512. [12] 刘志青, 李鹏程, 陈小卫, 等. 基于信息向量机的机载激光雷达点云数据分类[J]. 光学精密工程, 2016, 24(1):210-219. LIU Zhiqing, LI Pengcheng, CHEN Xiaowei, et al. Classification of airborne LiDAR point cloud data based on information vector machine[J]. Optics and Precision Engineering, 2016, 24(1):210-219. [13] 朱江涛, 黄睿. 基于Adaboost的高光谱与LiDAR数据特征选择与分类[J]. 遥感信息, 2014, 29(6):68-72. ZHU Jiangtao, HUANG Rui. Feature selection and classification of hyperspectral data and LiDAR data based on Adaboost[J]. Remote Sensing Information, 2014, 29(6):68-72. [14] ZHANG Zhenxin, ZHANG Liqiang, TONG Xiaohua, et al. Discriminative-dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7309-7322. [15] GUO Bo, HUANG Xianfeng, ZHANG Fan, et al. Classification of airborne laser scanning data using JointBoost[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015(100):71-83. [16] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Contextual classification of LiDAR data and building object detection in urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(87):152-165. [17] XU S, VOSSELMAN G, ELBERINK S O. Multiple-entity based classification of airborne laser scanning data in urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(88):1-15. [18] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [19] YOUSEFHUSSIEN M, KELBE D J, IENTILUCCI E J, et al. A multi-scale fully convolutional network for semantic labeling of 3D point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018(143):191-204. [20] YANG Zhishuang, JIANG Wanshou, XU Bo, et al. A convolutional neural network-based 3D semantic labeling method for ALS point clouds[J]. Remote Sensing, 2017, 9(9):936. [21] YANG Zhishuang, TAN Bo, PEI Huikun, et al. Segmentation and multi-scale convolutional neural network-based classification of airborne laser scanner data[J]. Sensors, 2018, 18(10):3347. [22] ZHAO Ruibin, PANG Mingyong, WANG Jidong. Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional neural network[J]. International Journal of Geographical Information Science, 2018, 32(5):960-979. [23] ISPRS. ISPRS semantic labeling contest (3D):results[EB/OL]. (2018-11-6).[2018-11-13]. http://www2.isprs.org/commissions/comm2/wg4/vaihingen-3d-semantic-labeling.html. [24] 姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014, 44(1):137-141. YAO Dengju, YANG Jing, ZHAN Xiaojuan. Feature selection algorithm based on random forest[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(1):137-141. [25] YAN W Y, SHAKER A, EL-ASHMAWY N. Urban land cover classification using airborne LiDAR data:a review[J]. Remote Sensing of Environment, 2015(158):295-310. [26] TAN Chuanqi, SUN Fuchun, KONG Tao, et al. A survey on deep transfer learning[C]//Proceedings of the 27th International Conference on Artificial Neural Networks. Rhodes, Greece:Springer, 2018:270-279. [27] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [28] KORNBLITH S, SHLENS J, LE Q V. Do Better imagenet models transfer better?[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles CA, United States:IEEE, 2019:2661-2671. [29] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:770-778. [30] BOYKOV Y, KOLMOGOROV V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9):1124-1137. [31] NIEMEYER J, ROTTENSTEINER F, SOERGEL U, et al. Hierarchical higher order crf for the classification of airborne LiDAR point clouds in urban areas[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016(XLI-B3):655-662. [32] QI CHARLES R, SU Hao, MO Kaichun, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:77-85. |