[1] ZHAO Y, JIANG M, MA Z F. Integration of SAR polarimetric features and multi-spectral data for object-based land cover classification[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4):64-72. [2] 李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016. 20160057. LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. [3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [4] 戴激光, 宋伟东, 李玉. 渐进式异源光学卫星影像SIFT匹配方法[J]. 测绘学报, 2014, 43(7):746-752. DOI:10.13485/j.cnki.11-2089.2014.00. DAI Jiguang, SONG Weidong, LI Yu. Progressive SIFT matching algorithm for multi-source optical satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7):746-752. DOI:10.13485/j.cnki.11-2089.2014.00. [5] 王峰, 尤红建, 傅兴玉, 等. 应用于多源SAR图像匹配的级联SIFT算法[J]. 电子学报, 2016, 44(3):548-554. WANG Feng, YOU Hongjian, FU Xingyu, et al. Cascade SIFT matching method for multi-source SAR images[J]. Acta Electronica Sinica, 2016, 44(3):548-554. [6] 叶沅鑫, 单杰, 熊金鑫, 等. 一种结合SIFT和边缘信息的多源遥感影像匹配方法[J]. 武汉大学学报(信息科学版), 2013, 38(10):1148-1151, 1260. YE Yuanxin, SHAN Jie, XIONG Jinxin, et al. A node localization method in wireless sensor network based on k-means cluster[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10):1148-1151, 1260. [7] 王瑞瑞, 马建文, 陈雪. 多传感器影像配准中基于虚拟匹配窗口的SIFT算法[J]. 武汉大学学报(信息科学版), 2011, 36(2):163-166. WANG Ruirui, MA Jianwen, CHEN Xue. SIFT algorithm based on visual matching window for registration between multi-sensor imagery[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2):163-166. [8] DELLINGER F, DELON Julie, GOUSSEAU Y, et al. SAR-SIFT:a SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1):453-466. [9] 凌志刚, 梁彦, 程咏梅, 等. 一种稳健的多源遥感图像特征配准方法[J]. 电子学报, 2010, 38(12):2892-2897. LING Zhigang, LIANG Yan, CHENG Yongmei, et al. A robust multi-source remote-sensing image registration method based on feature matching[J]. Acta Electronica Sinica, 2010, 38(12):2892-2897. [10] KOVESI P. Image features from phase congruency[J]. Journal of Computer Vision Research, 1999, 1(3):1-26. [11] WONG A, CLAUSI D A. ARRSI:automatic registration of remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1483-1493. [12] 陈敏, 朱庆, 朱军, 等. 多光谱遥感影像亮度空间相位一致性特征点检测[J]. 测绘学报, 2016, 45(2):178-185. DOI:10.11947/j.AGCS.2016.20150030. CHEN Min, ZHU Qing, ZHU Jun, et al. Interest point detection for multispectral remote sensing image using phase congruency in illumination space[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2):178-185. DOI:10.11947/j.AGCS.2016.20150030. [13] 叶沅鑫, 单杰, 彭剑威, 等. 利用局部自相似进行多光谱遥感图像自动配准[J]. 测绘学报, 2014, 43(3):268-275. DOI:10.13485/j.cnki.11-2089.2014.0039. YE Yuanxin, SHAN Jie, PENG Jianwei, et al. Automated multispectral remote sensing image registration using local self-similarity[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(3):268-275. DOI:10.13485/j.cnki.11-2089.2014.0039. [14] 闫利, 王紫琦, 叶志云. 顾及灰度和梯度信息的多模态影像配准算法[J]. 测绘学报, 2018, 47(1):71-81. DOI:10.11947/j.AGCS.2018.20170368. YAN Li, WANG Ziqi, YE Zhiyun. Multimodal image registration algorithm considering grayscale and gradient information[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):71-81. DOI:10.11947/j.AGCS.2018.20170368. [15] LI Jiayuan, HU Qingwu, AI Mingyao. RIFT:multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing, 2020, 29:3296-3310. [16] DOSOVITSKIY A, FISCHER P, SPRINGENBERG J T, et al. Discriminative unsupervised feature learning with exemplar convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(9):1734-1747. [17] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6):693-704. DOI:10.11947/j.AGCS.2018.20170640. GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. DOI:10.11947/j.AGCS.2018.20170640. [18] ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA:IEEE, 2015:4353-4361. [19] 范大昭, 董杨, 张永生. 卫星影像匹配的深度卷积神经网络方法[J]. 测绘学报, 2018, 47(6):844-853. DOI:10.11947/j.AGCS.2018.20170627. FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolution neural network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):844-853. DOI:10.11947/j.AGCS.2018.20170627. [20] YANG Zhuoqian, DAN Tingting, YANG Yang. Multi-temporal remote sensing image registration using deep convolutional features[J]. IEEE Access, 2018, 6:38544-38555. [21] YE Famao, SU Yanfei, XIAO Hui, et al. Remote sensing image registration using convolutional neural network features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2):232-236. [22] GONG J Y, JI S P. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):1-15. [23] YI K M, TRULLS E, LEPETIT V, et al. LIFT:learned invariant feature transform[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, Netherlands:Springer, 2016:467-483. [24] DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint:self-supervised interest point detection and description[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT:IEEE, 2018:224-236. [25] NOH H, ARAUJO A, SIM J, et al. Large-scale image retrieval with attentive deep local features[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice:IEEE, 2017:3456-3465. [26] DUSMANU M, ROCCO I, PAJDLA T, et al. D2-Net:a trainable CNN for joint description and detection of local features[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA:IEEE, 2019. [27] LUO Zixin, SHEN Tianwei, ZHOU Lei, et al. ContextDesc:local descriptor augmentation with cross-modality context[C]//The Processdings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA:IEEE, 2019:2522-2531. [28] KAREN Simonyan, REW Zisserman. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representation. San-diego, California, USA:[s.n.],2014. [29] MISHCHUK A, MISHKIN D, RADENOVIĆ F, et al. Working hard to know your neighbor's margins:local descriptor learning loss[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach:Curran Associates Inc., 2017. [30] LI Zhengqi, SNAVELY N. MegaDepth:learning single-view depth prediction from internet photos[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018. [31] SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//The Processdings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:4104-4113. |