Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (6): 1113-1127.doi: 10.11947/j.AGCS.2024.20230387
• Smart Surveying and Mapping • Previous Articles Next Articles
Xunqiang GONG1,2(), Hongyu WANG2,3(), Tieding LU1,2, Wei YOU3
Received:
2023-09-05
Published:
2024-07-22
Contact:
Hongyu WANG
E-mail:xqgong1988@163.com;wanghyvv@foxmail.com
About author:
GONG Xunqiang (1988—), male, PhD, associate professor, majors in intelligent monitoring of major transportation engineering. E-mail: xqgong1988@163.com
Supported by:
CLC Number:
Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127.
Tab.1
Accuracy indexes of various models in low-frequency observation experiments"
模型 | A1 | A2 | B1 | B2 | ||||
---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
SVR | 1.267 | 1.302 | 1.365 | 1.414 | 1.126 | 1.196 | 1.327 | 1.353 |
LSTM | 1.185 | 1.212 | 1.240 | 1.550 | 1.191 | 1.229 | 1.361 | 1.382 |
CNN-LSTM | 1.213 | 1.247 | 1.155 | 1.188 | 1.203 | 1.248 | 1.148 | 1.171 |
CNN-Attention-LSTM | 1.061 | 1.095 | 0.813 | 0.905 | 1.145 | 1.192 | 1.083 | 1.107 |
BiLSTM | 1.002 | 1.037 | 1.092 | 1.119 | 1.552 | 1.576 | 1.422 | 1.439 |
CNN-BiLSTM | 1.481 | 1.513 | 1.021 | 1.083 | 1.045 | 1.091 | 1.262 | 1.282 |
Resnet | 0.597 | 0.696 | 1.245 | 1.307 | 1.031 | 1.096 | 0.555 | 0.678 |
GPDLPnet | 0.229 | 0.267 | 0.355 | 0.432 | 0.377 | 0.467 | 0.391 | 0.464 |
Tab.2
Accuracy indexes of various models in high-frequency observation experiments"
测点 | 模型 | SVR | LSTM | CNN-LSTM | CNN-Attention-LSTM | BiLSTM | CNN-BiLSTM | Resnet | GPDLPnet |
---|---|---|---|---|---|---|---|---|---|
E1 | MAE | 1.144 | 0.936 | 0.892 | 0.772 | 0.632 | 0.806 | 0.836 | 0.273 |
RMSE | 1.244 | 0.955 | 0.933 | 0.830 | 0.690 | 0.849 | 1.037 | 0.309 | |
E2 | MAE | 1.412 | 1.032 | 0.772 | 0.780 | 0.349 | 0.748 | 0.934 | 0.247 |
RMSE | 1.613 | 1.050 | 0.811 | 0.818 | 0.453 | 0.767 | 1.092 | 0.355 | |
F1 | MAE | 0.989 | 0.603 | 0.671 | 0.683 | 0.504 | 0.574 | 0.589 | 0.278 |
RMSE | 1.288 | 0.687 | 0.816 | 0.809 | 0.571 | 0.678 | 0.774 | 0.342 | |
F2 | MAE | 0.996 | 0.987 | 0.932 | 0.948 | 0.939 | 0.648 | 0.641 | 0.259 |
RMSE | 1.163 | 1.154 | 1.061 | 1.106 | 1.099 | 0.768 | 0.764 | 0.335 | |
G1 | MAE | 0.459 | 0.675 | 0.408 | 0.337 | 0.381 | 0.350 | 0.437 | 0.157 |
RMSE | 0.571 | 0.746 | 0.471 | 0.433 | 0.457 | 0.439 | 0.506 | 0.242 | |
G2 | MAE | 0.615 | 0.482 | 0.353 | 0.271 | 0.774 | 0.345 | 0.673 | 0.233 |
RMSE | 0.692 | 0.538 | 0.395 | 0.304 | 0.873 | 0.372 | 0.821 | 0.263 | |
H1 | MAE | 0.785 | 1.117 | 1.175 | 0.938 | 1.163 | 1.023 | 0.639 | 0.423 |
RMSE | 0.953 | 1.205 | 1.278 | 1.008 | 1.243 | 1.106 | 0.823 | 0.533 | |
H2 | MAE | 0.663 | 0.803 | 0.855 | 0.902 | 0.907 | 0.875 | 0.315 | 0.204 |
RMSE | 0.736 | 0.918 | 1.001 | 1.049 | 1.025 | 1.009 | 0.401 | 0.243 |
[1] | 黎奇, 白征东, 陈波波, 等. GNSS/INS多传感器组合高速铁路轨道测量系统[J]. 测绘学报, 2020, 49(5):569-579. DOI:10.11947/j.AGCS.2020.20190344. |
LI Qi, BAI Zhengdong, CHEN Bobo, et al. A novel track measurement system based on GNSS/INS and multisensor for high-speed railway[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5):569-579. DOI:10.11947/j.AGCS.2020.20190344. | |
[2] | 中国铁路总公司. 铁路工程沉降变形观测与评估技术规程Q/CR 9230—2016[S]. 北京: 中国铁道出版社, 2016. |
China Railway Corporation. Observation and evaluation specification for settlement deformation of railway engineering Q/CR 9230—2016[S]. Beijing: China Railway Publishing House, 2016. | |
[3] | 张献州, 夏晨翕, 陈霄, 等. IGM-FM串联模型在高铁路基沉降预测中的应用[J]. 重庆交通大学学报(自然科学版), 2020, 39(11):99-108. |
ZHANG Xianzhou, XIA Chenxi, CHEN Xiao, et al. Application of series IGM-FM combination model in prediction of subgrade settlement of high-speed railway[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(11):99-108. | |
[4] | GONG X, LI Z. Bridge pier settlement prediction in high-speed railway via autoregressive model based on robust weighted total least-squares[J]. Survey Review, 2018, 50(359):147-154. |
[5] | GONG Xunqiang, WANG Hongyu, LU Tieding, et al. Combined prediction model for high-speed railway bridge pier settlement based on robust weighted total least-squares autoregression and adaptive dynamic cubic exponential smoothing[J]. Journal of Surveying Engineering, 2023, 149(2):04023001. |
[6] | 王秀英, 雷可, 王滕, 等. 洞桩法车站下穿既有管线工程的沉降预测[J]. 土木工程学报, 2021, 54(S1):65-75. |
WANG Xiuying, LEI Ke, WANG Teng, et al. Settlement prediction of tunnel pile method station under existing pipeline project[J]. China Civil Engineering Journal, 2021, 54(S1):65-75. | |
[7] | 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005. DOI:10.11947/j.AGCS.2021.20210235. |
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005. DOI:10.11947/j.AGCS.2021.20210235. | |
[8] | 陈军, 王艳慧, 武昊, 等. 时空信息赋能高质量发展的基本问题与发展方向[J]. 时空信息学报, 2023, 30(1):1-11. |
CHEN Jun, WANG Yanhui, WU Hao, et al. Basic issues and development directions of high-quality development empowered by spatio-temporal information[J]. Journal of Spatio-Temporal Information, 2023, 30(1):1-11. | |
[9] | 郭澳庆, 胡俊, 郑万基, 等. 时序InSAR滑坡形变监测与预测的N-BEATS深度学习法:以新铺滑坡为例[J]. 测绘学报, 2022, 51(10):2171-2182. DOI:10.11947/j.AGCS.2022.20220298. |
GUO Aoqing, HU Jun, ZHENG Wanji, et al. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: a case study of Xinpu landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2171-2182. DOI:10.11947/j.AGCS.2022.20220298. | |
[10] | 禹文豪, 魏铖, 陈佳鑫. 面向不平衡POI类别分布的电子地图多层次标签预测模型[J]. 测绘学报, 2023, 52(2):318-328. DOI:10.11947/j.AGCS.2023.20210451. |
YU Wenhao, WEI Cheng, CHEN Jiaxin. Predicting the unbalanced labels of POIs on digital maps using hierarchical model[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2):318-328. DOI:10.11947/j.AGCS.2023.20210451. | |
[11] | MACKENZIE J, RODDICK J F, ZITO R. An evaluation of HTM and LSTM for short-term arterial traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5):1847-1857. |
[12] | 冯非凡, 武雪玲, 牛瑞卿, 等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(5):784-790. |
FENG Feifan, WU Xueling, NIU Ruiqing, et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):784-790. | |
[13] | ZHENG Haifeng, LIN Feng, FENG Xinxin, et al. A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11):6910-6920. |
[14] | 周于涛, 吴华意, 成洪权, 等. 结合自注意力机制和结伴行为特征的行人轨迹预测模型[J]. 武汉大学学报(信息科学版), 2020, 45(12):1989-1996. |
ZHOU Yutao, WU Huayi, CHENG Hongquan, et al. Pedestrian trajectory prediction model based on self-attention mechanism and group behavior characteristics[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12):1989-1996. | |
[15] | 王利, 许豪, 舒宝, 等. 利用互信息和IPSO-LSTM进行滑坡监测多源数据融合[J]. 武汉大学学报(信息科学版), 2021, 46(10):1478-1488. |
WANG Li, XU Hao, SHU Bao, et al. A multi-source heterogeneous data fusion method for landslide monitoring with mutual information and IPSO-LSTM neural network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1478-1488. | |
[16] | LI Guannan, ZHAO Xiaowei, FAN Cheng, et al. Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions[J]. Journal of Building Engineering, 2021, 43:103182. |
[17] | 陈军, 艾廷华, 闫利, 等. 智能化测绘的混合计算范式与方法研究[J/OL]. 测绘学报: 1-19 [2024-05-20].http://kns.cnki.net/kcms/detail/11.2089.P.20240415.1049.002.html. |
CHEN Jun, AI Tinhua, YAN Li, et al. Hybrid computational paradigm and methods for intelligentized surveying and mapping[J/OL]. Acta Geodaetica et Cartographica Sinica: 1-19 [2024-05-20].http://kns.cnki.net/kcms/detail/11.2089.P.20240415.1049.002.html. | |
[18] | CHEN X, SUN L. Bayesian temporal factorization for multidimensional time series prediction[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(9):4659-4673. |
[19] | PURWINS H, LI Bo, VIRTANEN T, et al. Deep learning for audio signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(2):206-219. |
[20] | 李新琴, 史天运, 李平, 等. 基于文本的高速铁路信号设备故障知识抽取方法研究[J]. 铁道学报, 2021, 43(3):92-100. |
LI Xinqin, SHI Tianyun, LI Ping, et al. Research on knowledge extraction method for high-speed railway signal equipment fault based on text[J]. Journal of the China Railway Society, 2021, 43(3):92-100. | |
[21] | DU Wenjie, CÔTÉ D, LIU Yan. SAITS: self-attention-based imputation for time series[J]. Expert Systems with Applications, 2023, 219:119619. |
[22] | HUANG Jin, ZHANG Tinghua, ZHU Jia, et al. A deep embedding model for knowledge graph completion based on attention mechanism[J]. Neural Computing and Applications, 2021, 33(15):9751-9760. |
[23] | 罗亦泳, 黄城, 张静影. 基于变分模态分解的变形监测数据去噪方法[J]. 武汉大学学报(信息科学版), 2020, 45(5):784-790. |
LUO Yiyong, HUANG Cheng, ZHANG Jingying. Denoising method of deformation monitoring data based on variational mode decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5):784-790. | |
[24] | 邢世玲, 吕双双, 朱利明, 等. 基于ICEEMDAN的连续梁桥车致振动信号的HHT分析[J]. 西南交通大学学报, 2021, 56(3):477-484, 492. |
XING Shiling, LÜ Shuangshuang, ZHU Liming, et al. Hilbert-Huang transfer analysis on vehicle-induced vibration signal of continuous bridges based on ICEEMDAN[J]. Journal of Southwest Jiaotong University, 2021, 56(3):477-484, 492. | |
[25] | 程肇兰, 张小强, 梁越. 基于LSTM网络的铁路货运量预测[J]. 铁道学报, 2020, 42(11):15-21. |
CHENG Zhaolan, ZHANG Xiaoqiang, LIANG Yue. Railway freight volume prediction based on LSTM network[J]. Journal of the China Railway Society, 2020, 42(11):15-21. | |
[26] | YANG C, KIM T, WANG R, et al. Show, attend, and translate: unsupervised image translation with self-regularization and attention[J]. IEEE Trans Image Process, 2019, 28(10):4845-4856. |
[27] | 张淑清, 杜灵韵, 王册浩, 等. 基于格拉姆角场与改进CNN-ResNet的风电功率预测方法[J]. 电网技术, 2023, 47(4):1540-1547. |
ZHANG Shuqing, DU Lingyun, WANG Cehao, et al. Wind power forecasting method based on GAF and improved CNN-ResNet[J]. Power System Technology, 2023, 47(4):1540-1547. | |
[28] | CAO Pei, ZHANG Shengli, TANG Jiong. Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning[J]. IEEE Access, 2018, 6:26241-26253. |
[29] | ZHANG X, LIN T, XU J, et al. DeepSpectra: an end-to-end deep learning approach for quantitative spectral analysis[J]. Anal Chim Acta, 2019, 1058:48-57. |
[30] | LIU Hui, MI Xiwei, LI Yanfei, et al. Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression[J]. Renewable Energy, 2019, 143:842-854. |
[31] | LIVIERIS I E, PINTELAS E, PINTELAS P. A CNN-LSTM model for gold price time-series forecasting[J]. Neural Computing and Applications, 2020, 32(23):17351-17360. |
[32] | BARRA S, CARTA S, CORRIGA A, et al. Deep learning and time series-to-image encoding for financial forecasting[J]. IEEE/CAA Journal of Automatics Sinica, 2020, 7(3):683-692. |
[33] | PAN Guangliang, WU Qihui, DING Guoru, et al. An autoformer-CSA approach for long-term spectrum prediction[J]. IEEE Wireless Communications Letters, 2023, 12(10):1647-1651. |
[34] | 龚循强, 汪宏宇, 鲁铁定, 等. 基于RLM-MC的高速铁路桥墩沉降曲线预测方法[J]. 铁道学报, 2022, 44(10):142-149. |
GONG Xunqiang, WANG Hongyu, LU Tieding, et al. A settlement curve prediction method of high-speed railway bridge pier based on RLM-MC[J]. Journal of the China Railway Society, 2022, 44(10):142-149. | |
[35] | 汪宏宇, 龚循强, 鲁铁定, 等. 基于马尔科夫链的曲线拟合法在尾矿坝沉降预测中的应用[J]. 东华理工大学学报(自然科学版), 2021, 44(4):364-369. |
WANG Hongyu, GONG Xunqiang, LU Tieding, et al. Application of curve fitting method based on Markov chain in tailings dam settlement prediction[J]. Journal of East China University of Technology (Natural Science), 2021, 44(4):364-369. |
[1] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
[2] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
[3] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
[4] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
[5] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
[6] | Zhi LIU, Shuyuan YANG, Zifan YU, Zhixi FENG, Quanwei GAO, Min WANG. Fast SAR autofocus based on convolutional neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 610-619. |
[7] | Huimin LIU, Chenwei ZHANG, Kaiqi CHEN, Min DENG, Chong PENG. Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 750-760. |
[8] | SUN Chuanmeng, WEI Yu, LI Xinyu, MA Tiehua, WU Zhibo. Intelligent detection method of image water level inversion for water level without water scale in complex scenes [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 558-568. |
[9] | JIANG San, LIU Kai, LI Qingquan, JIANG Wanshou. Learned local features for SfM reconstruction of UAV images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 321-331. |
[10] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
[11] | LIN Yunhao, WANG Yanjun, LI Shaochun, CAI Hengfan. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. |
[12] | REN Jiaxin, LIU Wanzeng, CHEN Jun, ZHANG Lan, TAO Yuan, ZHU Xiuli, ZHAO Tingting, LI Ran, ZHAI Xi, WANG Haiqing, ZHOU Xiaoguang, HOU Dongyang, WANG Yong. Knowledge-guided intelligent recognition of the scale for fragmented raster topographic maps [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 146-157. |
[13] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
[14] | CAO Xingwen, ZHENG Hongwei, LIU Ying, WU Mengquan, WANG Lingyue, BAO Anming, CHEN Xi. Multi-pedestrian trajectory prediction method based on multi-view 3D simulation video learning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1595-1608. |
[15] | HE Jiaxing, ZHENG Nanshan, DING Rui, ZHANG Kefei, CHEN Tianyue. A GNSS-IR soil moisture inversion method based on the convolutional neural network optimized by particle swarm optimization [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1286-1297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||